Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bortezomib shows promise in reducing GVHD and reconstituting immune system in some patients

08.12.2009
A drug that has become a mainstay of multiple myeloma treatment may outperform alternative therapies in re-establishing the immune system of patients who have received stem cell transplants from unrelated, partially matched donors, according to early clinical trial results to be presented by Dana-Farber Cancer Institute investigators at the American Society of Hematology's (ASH) annual meeting on Sunday, Dec. 6 (Abstract 48, Ernest N. Morial Convention Center, Room 243-245, 5:45 pm CT).

The trial was designed to determine whether the drug bortezomib (trade name Velcade), when added to routine agents (tacrolimus, methotrexate), can improve control of graft-versus-host disease (GVHD) and improve immune system recovery following a transplant from a mismatched-unrelated donor. GVHD is a common and potentially severe side effect of blood-forming stem cell transplants, in which donor immune cells attack normal patient cells and tissues. GVHD is more frequent in patients receiving transplants from mismatched-unrelated donors (in comparison with matched-related donors).

Based on bortezomib's effect in preclinical models, and in multiple myeloma patients who have received donor stem cell transplants, Dana-Farber's John Koreth, MBBS, DPhil, and colleagues theorized that it could help control the overactivity of immune cells responsible for GVHD in stem cell transplant patients.

Bortezomib inhibits the activity of antigen-presenting cells, which help initiate the immune attack in GVHD, and reduces activity of an important protein called nuclear factor-ƒÛB in T cells, which undertake the immune attack. In preclinical studies, bortezomib has been shown to selectively deplete T cells that can target patients' normal cells. Mouse transplant studies have shown that early administration of bortezomib protects against GVHD without reducing the transplanted stem cells' ability to settle in the bone marrow.

The new, Phase 1 clinical trial involved 23 patients who received bortezomib-based therapy (bortezomib, tacrolimus, and methotrexate) after reduced-intensity stem cell transplants from mismatched-unrelated donors. Three dosage levels of bortezomib were tested. In updated results on 35 bortezomib-based mismatched-unrelated patients reported at ASH, GVHD rates and extent of immune system reconstitution were compared with patients who had received sirolimus-based therapy (sirolimus, tacrolimus, and methotrexate) after transplants from matched-related donors, matched-unrelated donors, and mismatched-unrelated donors.

The results show that the bortezomib-based therapy was safe and had little toxicity. Transplanted stem cells took root, or "engrafted" reliably, and the rate of GVHD in the bortezomib-based mismatched-unrelated transplants was comparable to that in sirolimus-based matched-related transplants. Interestingly, immune cell reconstitution was significantly improved in the bortezomib-based patients in the early post-transplant period (3-6 months), compared with the sirolimus-based patients.

"Our results suggest that borezomib is a promising novel immunomodulatory agent in donor stem-cell transplantation," Koreth says. "A Phase 2 trial is now accruing patients to help determine its ultimate effectiveness."

The study's senior author is Dana-Farber's Edwin Alyea, MD. Co-authors are Kristen Stevenson, Haesook Kim, PhD, Michael Garcia, Vincent Ho, MD, Philippe Armand, MD, Corey Cutler, MD, Jerome Ritz, MD, Joseph Antin, MD, and Robert Soiffer, MD, all of Dana-Farber.

The study was supported by Millennium Pharmaceuticals Inc. and the National Institutes of Health.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Teresa Herbert | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>