Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bortezomib shows promise in reducing GVHD and reconstituting immune system in some patients

08.12.2009
A drug that has become a mainstay of multiple myeloma treatment may outperform alternative therapies in re-establishing the immune system of patients who have received stem cell transplants from unrelated, partially matched donors, according to early clinical trial results to be presented by Dana-Farber Cancer Institute investigators at the American Society of Hematology's (ASH) annual meeting on Sunday, Dec. 6 (Abstract 48, Ernest N. Morial Convention Center, Room 243-245, 5:45 pm CT).

The trial was designed to determine whether the drug bortezomib (trade name Velcade), when added to routine agents (tacrolimus, methotrexate), can improve control of graft-versus-host disease (GVHD) and improve immune system recovery following a transplant from a mismatched-unrelated donor. GVHD is a common and potentially severe side effect of blood-forming stem cell transplants, in which donor immune cells attack normal patient cells and tissues. GVHD is more frequent in patients receiving transplants from mismatched-unrelated donors (in comparison with matched-related donors).

Based on bortezomib's effect in preclinical models, and in multiple myeloma patients who have received donor stem cell transplants, Dana-Farber's John Koreth, MBBS, DPhil, and colleagues theorized that it could help control the overactivity of immune cells responsible for GVHD in stem cell transplant patients.

Bortezomib inhibits the activity of antigen-presenting cells, which help initiate the immune attack in GVHD, and reduces activity of an important protein called nuclear factor-ƒÛB in T cells, which undertake the immune attack. In preclinical studies, bortezomib has been shown to selectively deplete T cells that can target patients' normal cells. Mouse transplant studies have shown that early administration of bortezomib protects against GVHD without reducing the transplanted stem cells' ability to settle in the bone marrow.

The new, Phase 1 clinical trial involved 23 patients who received bortezomib-based therapy (bortezomib, tacrolimus, and methotrexate) after reduced-intensity stem cell transplants from mismatched-unrelated donors. Three dosage levels of bortezomib were tested. In updated results on 35 bortezomib-based mismatched-unrelated patients reported at ASH, GVHD rates and extent of immune system reconstitution were compared with patients who had received sirolimus-based therapy (sirolimus, tacrolimus, and methotrexate) after transplants from matched-related donors, matched-unrelated donors, and mismatched-unrelated donors.

The results show that the bortezomib-based therapy was safe and had little toxicity. Transplanted stem cells took root, or "engrafted" reliably, and the rate of GVHD in the bortezomib-based mismatched-unrelated transplants was comparable to that in sirolimus-based matched-related transplants. Interestingly, immune cell reconstitution was significantly improved in the bortezomib-based patients in the early post-transplant period (3-6 months), compared with the sirolimus-based patients.

"Our results suggest that borezomib is a promising novel immunomodulatory agent in donor stem-cell transplantation," Koreth says. "A Phase 2 trial is now accruing patients to help determine its ultimate effectiveness."

The study's senior author is Dana-Farber's Edwin Alyea, MD. Co-authors are Kristen Stevenson, Haesook Kim, PhD, Michael Garcia, Vincent Ho, MD, Philippe Armand, MD, Corey Cutler, MD, Jerome Ritz, MD, Joseph Antin, MD, and Robert Soiffer, MD, all of Dana-Farber.

The study was supported by Millennium Pharmaceuticals Inc. and the National Institutes of Health.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Teresa Herbert | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>