Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cells used in bladder regeneration

19.02.2013
A new approach to bladder regeneration is capitalizing on the potential of two distinct cell populations harvested from a patient's healthy bone marrow, a new study reports.

The Northwestern Medicine® research, which will be published February 18 in the Proceedings of the National Academy of Sciences by lead author Arun K. Sharma, research assistant professor in urology at Northwestern University Feinberg School of Medicine and colleagues, is an alternative to contemporary tissue-engineering strategies. The bone marrow cells are being used to recreate the organ's smooth muscle, vasculature, and nerve tissue.

"We are manipulating a person's own disease-free cells for bladder tissue reformation," said Sharma, a member of the Institute for BioNanotechnology in Medicine and the Ann & Robert H. Lurie Children's Hospital of Chicago Research Center. "We have used the spina bifida patient population as a proof of concept model because those patients typically have bladder dysfunction. However, this regeneration approach could be used for people suffering from a variety of bladder issues where the bone marrow microenvironment is deemed normal."

In end-stage neurogenic bladder disease – an illness often associated with spinal cord diseases like spina bifida – the nerves which carry messages between the bladder and the brain do not work properly, causing an inability to pass urine. The most common surgical option, augmentation cystoplasty, involves placing a "patch" derived from an individual's bowel over a part of the diseased organ in order to increase its size. The current "gold standard," the procedure remains problematic because the bowel tissue introduces long-term complications like the development of electrolyte imbalance and bladder cancer.

Because Sharma's procedure does not use bowel tissue, it offers the benefits of augmentation without the association of long-term risks. His technique combines stem and progenitor cells from a patient's bone marrow with a synthetic scaffold created in the lab of Guillermo Ameer, ScD, professor of biomedical engineering at McCormick School of Engineering and Applied Science and of surgery at Feinberg. The scaffold takes the place of the traditional patch.

"We decided to use material that has the ability to be tailored to simulate mechanical properties of the bladder," said Sharma, director of pediatric urological regenerative medicine at Lurie Children's. "Using the elastomer created by Dr. Ameer and the bone marrow stem and progenitor cells, I believe that we have developed a technique that can potentially be used in lieu of current bladder augmentation procedures. However, further study is needed."

Sharma's initial research was supported in part by an Excellence in Academic Medicine grant funded by the Illinois Department of Healthcare and Family Services.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>