Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The body rids itself of damage when it really matters

20.09.2011
Although the body is constantly replacing cells and cell constituents, damage and imperfections accumulate over time.

Cleanup efforts are saved for when it really matters. Researchers from the University of Gothenburg, Sweden, are able to show how the body rids itself of damage when it is time to reproduce and create new life.

‘I have a daughter. She is made of my cells yet has much less cellular damage than my cells. Why didn’t she inherit my cells including the damaged proteins? That’s the process I’m interested in,’ says Malin Hernebring from the Department of Cell- and Molecular Biology at the University of Gothenburg.

A few days after conception, the cells in the embryo all look the same – they are unspecified stem cells that can develop into any bodily cell type. As the process of cell specification (differentiation) begins, they go from being able to keep dividing infinitely to being able to do so only a limited number of times. This is when they start cleansing themselves.

‘Quite unexpectedly we found that the level of protein damage was relatively high in the embryo’s unspecified cells, but then it decreased dramatically. A few days after the onset of cell differentiation, the protein damage level had gone down by 80-90 percent. We think this is a result of the damaged material being broken down.’

In the past, researchers have believed that the body keeps cells involved in reproduction isolated and protected from damage. Now it has been shown that these types of cells go through a rejuvenation process that rids them of the inherited damage.

Some types of protein damage in the body increase with age. Although all the necessary information is stored in the DNA, something keeps the body from using it to keep repairing the body.

‘These types of protein damages are what make us appear old, like wrinkles around the eyes. While wrinkles are relatively harmless, serious problems may arise elsewhere in the body. I’m thinking of age-related diseases like Parkinson’s, Alzheimer’s, type 2 diabetes and cancer.’

Malin Hernebring can show that the damaged proteins in the cells are probably broken down by molecular machines called proteasomes. The proteasome activity increases considerably during the initial steps of embryonic stem cell differentiation in mice. Deciphering this rejuvenation process helps us better understand what ageing really is, which in turn may help us slow it down and also prevent the occurrence and ill effects of age-related diseases.

Contact:
Malin Hernebring
031- 786 2576
malin.hernebring@cmb.gu.se
Department of Cell- and Molecular Biology
University of Gothenburg
Medicinaregatan 9E
413 90 Göteborg, Sweden

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>