Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The body rids itself of damage when it really matters

20.09.2011
Although the body is constantly replacing cells and cell constituents, damage and imperfections accumulate over time.

Cleanup efforts are saved for when it really matters. Researchers from the University of Gothenburg, Sweden, are able to show how the body rids itself of damage when it is time to reproduce and create new life.

‘I have a daughter. She is made of my cells yet has much less cellular damage than my cells. Why didn’t she inherit my cells including the damaged proteins? That’s the process I’m interested in,’ says Malin Hernebring from the Department of Cell- and Molecular Biology at the University of Gothenburg.

A few days after conception, the cells in the embryo all look the same – they are unspecified stem cells that can develop into any bodily cell type. As the process of cell specification (differentiation) begins, they go from being able to keep dividing infinitely to being able to do so only a limited number of times. This is when they start cleansing themselves.

‘Quite unexpectedly we found that the level of protein damage was relatively high in the embryo’s unspecified cells, but then it decreased dramatically. A few days after the onset of cell differentiation, the protein damage level had gone down by 80-90 percent. We think this is a result of the damaged material being broken down.’

In the past, researchers have believed that the body keeps cells involved in reproduction isolated and protected from damage. Now it has been shown that these types of cells go through a rejuvenation process that rids them of the inherited damage.

Some types of protein damage in the body increase with age. Although all the necessary information is stored in the DNA, something keeps the body from using it to keep repairing the body.

‘These types of protein damages are what make us appear old, like wrinkles around the eyes. While wrinkles are relatively harmless, serious problems may arise elsewhere in the body. I’m thinking of age-related diseases like Parkinson’s, Alzheimer’s, type 2 diabetes and cancer.’

Malin Hernebring can show that the damaged proteins in the cells are probably broken down by molecular machines called proteasomes. The proteasome activity increases considerably during the initial steps of embryonic stem cell differentiation in mice. Deciphering this rejuvenation process helps us better understand what ageing really is, which in turn may help us slow it down and also prevent the occurrence and ill effects of age-related diseases.

Contact:
Malin Hernebring
031- 786 2576
malin.hernebring@cmb.gu.se
Department of Cell- and Molecular Biology
University of Gothenburg
Medicinaregatan 9E
413 90 Göteborg, Sweden

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>