Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionic pancreas outperforms insulin pump in adults, youth

16.06.2014

NIH grantees test device for people with type 1 diabetes to replace fingerstick tests, manual insulin injections

People with type 1 diabetes who used a bionic pancreas instead of manually monitoring glucose using fingerstick tests and delivering insulin using a pump were more likely to have blood glucose levels consistently within the normal range, with fewer dangerous lows or highs. The full report of the findings, funded by the National Institutes of Health, can be found online June 15 in the New England Journal of Medicine.


From right, researcher Dr. Steven Russell of Massachusetts General Hospital stands with Frank Spesia and Colby Clarizia, two participants in a type 1 diabetes trial testing an electronic device called a bionic pancreas -- the cellphone-sized device shown -- which replaces their traditional fingerstick tests and manual insulin pumps. Alt tag -- Image of Dr. Steven Russell and two patients.

Credit: Photo courtesy of Adam Brown, diaTribe.org

The researchers – at Boston University and Massachusetts General Hospital – say the process of blood glucose control could improve dramatically with the bionic pancreas. Currently, people with type 1 diabetes walk an endless tightrope. Because their pancreas doesn't make the hormone insulin, their blood glucose levels can veer dangerously high and low. Several times a day they must use fingerstick tests to monitor their blood glucose levels and manually take insulin by injection or from a pump.

In two scenarios, the researchers tested a bihormonal bionic pancreas, which uses a removable tiny sensor located in a thin needle inserted under the skin that automatically monitors real time glucose levels in tissue fluid and provides insulin and its counteracting hormone, glucagon, via two automatic pumps. In one scenario, 20 adults wore this device combination and carried a cell phone-sized wireless monitor around Boston for five days, unrestricted in their activities. In the other, 32 youth wore the device combination for five days at a camp for children with type 1 diabetes. Both groups were also monitored for five days wearing their own conventional pumps that deliver insulin.

"The bionic pancreas system reduced the average blood glucose to levels that have been shown to dramatically reduce the risk of diabetic complications," said co-first author Steven Russell, M.D., Ph.D., assistant professor of medicine at Massachusetts General Hospital. "This is tremendously difficult with currently available technology, and so most people with diabetes are unable to achieve these levels."

The researchers found about 37 percent fewer interventions for low blood glucose (hypoglycemia) and a more than twofold reduction in the time in hypoglycemia in adults using the bionic pancreas than with the manual pump. For adolescents using the bionic pancreas, results showed more than a twofold reduction in the need for interventions for hypoglycemia. As well, both groups had significant improvements in glucose levels with the bionic pancreas, particularly during the night.

"The performance of our system in both adults and adolescents exceeded our expectations under very challenging real-world conditions," said Ed Damiano, Ph.D., the paper's senior author, an associate professor of biomedical engineering at Boston University and the parent of a son with type 1 diabetes.

"A cure is always the end goal," he said. "As that goal remains elusive, a truly automated technology, which can consistently and relentlessly keep people healthy and safe from harm of hypoglycemia, would lift an enormous emotional and practical burden from the shoulders of people with type 1 diabetes, including my child and so many others."

Just as a thermostat helps control a home's temperature, the normal pancreas senses blood glucose levels and adjusts the hormones that control it. People with type 1 diabetes, whose pancreas produces little or no insulin, have been using the equivalent of a manual thermostat, needing constant checking and adjustment. A bionic pancreas – like the one used in these studies – would function more like an automated thermostat, automatically monitoring blood glucose and delivering insulin or glucagon when needed to keep glucose within the normal range. As well, these bionic pancreas devices could be monitored remotely by the patient's medical provider or parent.

"With promising results such as these, we plan to support larger multicenter trials of the artificial pancreas in the near future," said Guillermo Arreaza-Rubín, M.D., the project officer for artificial pancreas studies funded by the NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). "Within the next few years, we hope these technologies will go beyond experimental trials and be available to benefit more people with type 1 diabetes."

"The landmark Diabetes Control and Complications study – also funded by NIDDK – has long shown that maintaining as normal a blood glucose level as possible early on can stave off complications, including heart, kidney and eye diseases, decades later," said NIDDK Director Griffin P. Rodgers, M.D. "By funding research on the artificial pancreas, we aim to help people with type 1 diabetes maintain healthy blood glucose levels, prevent painful and costly complications, and lead freer, healthier lives."

###

Among other funding sources, this research was supported by NIDDK grants R01DK085633 and R01DK097657, and was made possible by the Special Statutory Funding Program for Type 1 Diabetes Research. The program was established by Congress for research to prevent and cure type 1 diabetes.

The NIDDK, part of the NIH, conducts and supports basic and clinical research and research training on some of the most common, severe and disabling conditions affecting Americans. The Institute's research interests include: diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition, and obesity; and kidney, urologic and hematologic diseases. For more information, visit http://www.niddk.nih.gov/.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH…Turning Discovery Into Health

Amy F. Reiter | Eurek Alert!

Further reports about: Diabetes Digestive NIDDK NIH artificial blood diseases hypoglycemia levels pancreas pump

More articles from Health and Medicine:

nachricht Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells
30.06.2016 | Heinrich-Heine University Duesseldorf

nachricht Heat for wounds – water-filtered infrared-A (wIRA) assists wound healing
30.06.2016 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>