Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionic pancreas outperforms insulin pump in adults, youth

16.06.2014

NIH grantees test device for people with type 1 diabetes to replace fingerstick tests, manual insulin injections

People with type 1 diabetes who used a bionic pancreas instead of manually monitoring glucose using fingerstick tests and delivering insulin using a pump were more likely to have blood glucose levels consistently within the normal range, with fewer dangerous lows or highs. The full report of the findings, funded by the National Institutes of Health, can be found online June 15 in the New England Journal of Medicine.


From right, researcher Dr. Steven Russell of Massachusetts General Hospital stands with Frank Spesia and Colby Clarizia, two participants in a type 1 diabetes trial testing an electronic device called a bionic pancreas -- the cellphone-sized device shown -- which replaces their traditional fingerstick tests and manual insulin pumps. Alt tag -- Image of Dr. Steven Russell and two patients.

Credit: Photo courtesy of Adam Brown, diaTribe.org

The researchers – at Boston University and Massachusetts General Hospital – say the process of blood glucose control could improve dramatically with the bionic pancreas. Currently, people with type 1 diabetes walk an endless tightrope. Because their pancreas doesn't make the hormone insulin, their blood glucose levels can veer dangerously high and low. Several times a day they must use fingerstick tests to monitor their blood glucose levels and manually take insulin by injection or from a pump.

In two scenarios, the researchers tested a bihormonal bionic pancreas, which uses a removable tiny sensor located in a thin needle inserted under the skin that automatically monitors real time glucose levels in tissue fluid and provides insulin and its counteracting hormone, glucagon, via two automatic pumps. In one scenario, 20 adults wore this device combination and carried a cell phone-sized wireless monitor around Boston for five days, unrestricted in their activities. In the other, 32 youth wore the device combination for five days at a camp for children with type 1 diabetes. Both groups were also monitored for five days wearing their own conventional pumps that deliver insulin.

"The bionic pancreas system reduced the average blood glucose to levels that have been shown to dramatically reduce the risk of diabetic complications," said co-first author Steven Russell, M.D., Ph.D., assistant professor of medicine at Massachusetts General Hospital. "This is tremendously difficult with currently available technology, and so most people with diabetes are unable to achieve these levels."

The researchers found about 37 percent fewer interventions for low blood glucose (hypoglycemia) and a more than twofold reduction in the time in hypoglycemia in adults using the bionic pancreas than with the manual pump. For adolescents using the bionic pancreas, results showed more than a twofold reduction in the need for interventions for hypoglycemia. As well, both groups had significant improvements in glucose levels with the bionic pancreas, particularly during the night.

"The performance of our system in both adults and adolescents exceeded our expectations under very challenging real-world conditions," said Ed Damiano, Ph.D., the paper's senior author, an associate professor of biomedical engineering at Boston University and the parent of a son with type 1 diabetes.

"A cure is always the end goal," he said. "As that goal remains elusive, a truly automated technology, which can consistently and relentlessly keep people healthy and safe from harm of hypoglycemia, would lift an enormous emotional and practical burden from the shoulders of people with type 1 diabetes, including my child and so many others."

Just as a thermostat helps control a home's temperature, the normal pancreas senses blood glucose levels and adjusts the hormones that control it. People with type 1 diabetes, whose pancreas produces little or no insulin, have been using the equivalent of a manual thermostat, needing constant checking and adjustment. A bionic pancreas – like the one used in these studies – would function more like an automated thermostat, automatically monitoring blood glucose and delivering insulin or glucagon when needed to keep glucose within the normal range. As well, these bionic pancreas devices could be monitored remotely by the patient's medical provider or parent.

"With promising results such as these, we plan to support larger multicenter trials of the artificial pancreas in the near future," said Guillermo Arreaza-Rubín, M.D., the project officer for artificial pancreas studies funded by the NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). "Within the next few years, we hope these technologies will go beyond experimental trials and be available to benefit more people with type 1 diabetes."

"The landmark Diabetes Control and Complications study – also funded by NIDDK – has long shown that maintaining as normal a blood glucose level as possible early on can stave off complications, including heart, kidney and eye diseases, decades later," said NIDDK Director Griffin P. Rodgers, M.D. "By funding research on the artificial pancreas, we aim to help people with type 1 diabetes maintain healthy blood glucose levels, prevent painful and costly complications, and lead freer, healthier lives."

###

Among other funding sources, this research was supported by NIDDK grants R01DK085633 and R01DK097657, and was made possible by the Special Statutory Funding Program for Type 1 Diabetes Research. The program was established by Congress for research to prevent and cure type 1 diabetes.

The NIDDK, part of the NIH, conducts and supports basic and clinical research and research training on some of the most common, severe and disabling conditions affecting Americans. The Institute's research interests include: diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition, and obesity; and kidney, urologic and hematologic diseases. For more information, visit http://www.niddk.nih.gov/.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH…Turning Discovery Into Health

Amy F. Reiter | Eurek Alert!

Further reports about: Diabetes Digestive NIDDK NIH artificial blood diseases hypoglycemia levels pancreas pump

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>