Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First biological marker for major depression could enable better diagnosis and treatment

18.02.2014
Teenage boys who show a combination of depressive symptoms and elevated levels of the 'stress hormone' cortisol are up to fourteen times more likely to develop major depression than those who show neither trait, according to research funded by the Wellcome Trust.

In a study published today in the Proceedings of the National Academy of Sciences, researchers from the University of Cambridge have identified the first biomarker – a biological signpost – for major, or clinical, depression. They argue that this could help identify those boys in particular at greatest risk of developing the illness and provide treatment at an earlier stage.

Major, or clinical, depression is a debilitating mental health problem that will affect one in six people at some point in their lives. However, until now there have been no biomarkers for major depression; this is believed to be, in part, because both the causes and the symptoms can be so varied.

"Depression is a terrible illness that will affect as many as ten million people in the UK at some point in their lives," says Professor Ian Goodyer from the University of Cambridge, who led the study. "Through our research, we now have a very real way of identifying those teenage boys most likely to develop clinical depression. This will help us strategically target preventions and interventions at these individuals and hopefully help reduce their risk of serious episodes of depression and their consequences in adult life."

Dr Matthew Owens from the University of Cambridge, first author on the study, adds: "This new biomarker suggests that we may be able to offer a more personalised approach to tackling boys at risk for depression. This could be a much needed way of reducing the number of people suffering from depression, and in particular stemming a risk at a time when there has been an increasing rate of suicide amongst teenage boys and young men."

The researchers measured levels of cortisol in saliva from two separate large cohorts of teenagers. The first cohort consisted of 660 teenagers, who provided four early morning samples on schooldays within a week and then again twelve months later. The researchers were able to show within this cohort that cortisol levels were stable over one year in the population at large in both boys and girls.

A second cohort, consisting of 1,198 teenagers, provided early morning samples over three school days.

Using self-reports about current symptoms of depression collected longitudinally over the twelve months and combining these with the cortisol findings, Professor Goodyer and colleagues were able to divide the teenagers in the first cohort into four distinct sub-groups, ranging from those with normal levels of morning cortisol and low symptoms of depression over time (Group 1) through to those teenagers with elevated levels of morning cortisol and high symptoms of depression over time (Group 4) – this latter group made up one in six (17%) of all subjects. Importantly, the research group replicated exactly these sub groups using the second cohort.

Because the two cohorts gave identical results, Professor Goodyer and colleagues were able to combine them and study the whole sample of 1,858 teenagers for the probability of developing clinical major depression and other psychiatric disorders when followed up 12 to 36 months later.

The subjects in Group 4 were on average seven times more likely than those in Group 1, and two to three times more likely than in the other two groups, to develop clinical depression. Further analysis revealed that boys in Group 4 were fourteen times more likely to suffer from major depression than those in Group 1 and two to four times more likely to develop the condition than either of the other two groups. Girls in Group 4, on the other the other hand, were only four times more likely than those in Group 1 to develop major depression, but were no more likely to develop the condition than those with either elevated morning cortisol or symptoms of depression alone. The findings suggest gender differences in how depression develops.

In order to demonstrate that the combination of high levels of cortisol and depressive symptoms was indeed a biomarker for a particular type of depression, the researchers needed to show that the teenagers in Group 4 were different from those in the other groups. They demonstrated this using a memory test completed on the first cohort consisting of systematically recording episodes recollected from an individual's life (known as 'autobiographical memory') under standardized test conditions.

Both boys and girls in Group 4 were particularly poor at systematically recollecting specific autobiographical memories from over thirty example situations across different social and personal domains. For example, when given the word 'picnic', most teenagers give a fairly detailed account of a time when they went on a picnic and who they were with; in Group 4, individuals tended to give very little, and more general non specific, information. This supports evidence from the scientific literature that suggests that high cortisol acts to suppress autobiographical memory recall.

The researchers hope that having an easily measurable biomarker – in this case, elevated cortisol plus depressive symptoms – will enable primary care services to identify boys at high risk and consider new public mental health strategies for this subgroup in the community.

The research has been welcomed by the Wellcome Trust, which funded the study. Dr John Williams, Head of Neuroscience and Mental Health, says: "Progress in identifying biological markers for depression has been frustratingly slow, but now we finally have a biomarker for clinical depression. The approach taken by Professor Goodyer's team may yet yield further biomarkers. It also gives tantalising clues about the gender differences in the causes and onset of depression."

Meera Senthilingam | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>