Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating Superbugs with a High-Tech Cleanser

12.12.2011
TAU engineers an easy-to-use solution to make hospitals safer

According to the World Health Organization, antibiotic-resistant bacteria are one of the top three threats to human health. Patients in hospitals are especially at risk, with almost 100,000 deaths due to infection every year in the U.S. alone.

Now Dr. Udi Qimron of the Department of Clinical Microbiology and Immunology at Tel Aviv University's Sackler Faculty of Medicine has developed an efficient and cost-effective liquid solution that can help fight antibiotic-resistant bacteria and keep more patients safe from life-threatening infections.

The solution is based on specially designed bacteriophages — viruses that infect bacteria — that can alter the genetic make-up of antibiotic-resistant bacteria. "We have genetically engineered the bacteriophages so that once they infect the bacteria, they transfer a dominant gene that confers renewed sensitivity to certain antibiotics," explains Dr. Qimron.

The solution, recently detailed in the journal Applied and Environmental Microbiology, could be added to common antibacterial cleansers used on hospital surfaces, turning resistant bacteria into sensitive bacteria. It's easy to prepare, easy to apply, and non-toxic, Dr. Qimron notes. He estimates that one liter of the growth medium — the liquid in which the bacteriophages are grown — will cost just a few dollars.

The research was done in collaboration with Ph.D. student Nir Friedman, lab technician Shahar Mor, and Dr. Rotem Edgar of the Ichilov Medical Center.

Changing bacteria's genetics

Certain antibiotics are designed to target and bind to a part of the bacteria cell called a ribosome — the protein factory of the cell. But after continual and frequent exposure to antibiotics, the bacteria "learn" to change components in the ribosome itself so that the antibiotics are unable to bind.

Dr. Qimron and his colleagues set out to determine whether they could make resistant bacteria sensitive to antibiotics again by re-introducing a component of the ribosome, a gene called rpsL, which restores bacteria's sensitivity to antibiotics. "Our novel approach relies on an effective delivery process and selection procedure, put on the same platform for the first time," says Dr. Qimron. With this system, the sensitive bacteria takes over the ecological niche once occupied by the resistant bacteria. And if a patient does happen to become infected by lingering bacteria anyway, traditional antibiotics can again be used as an effective treatment.

Two steps to disarming bacteria

Added to cleansers, Tellurite represents the second step in a two-part process. A Tellurite compound, which is toxic to bacteria, would also be spread on all surfaces to wipe out the bacteria that had not been rendered sensitive, and thus the entire population of the surface bacteria would be sensitized. The combination is designed to first disarm, and then kill dangerous bacteria.

Next, the solution will be tested in pre-clinical animal trials to ensure its safety before being made available for wider use at hospitals. Once its safety is guaranteed, the solution will come in a bottle, says Dr. Qimron, and easily added to a bucket or spray.

For more medicine and health news from Tel Aviv University, click here

Keep up with the latest AFTAU news on Twitter: http://www.twitter.com/AFTAUnews

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>