Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic measuring stations for pollen

04.02.2009
The snow is thawing, the first crocuses are fighting their way through the cold earth into the daylight and hay fever sufferers are already pulling out their handkerchiefs. A new type of measuring station will automatically determine the pollen count and thus improve the forecast.

"And here is the pollen forecast for tomorrow: Low levels of alder and hazel..." – we are all familiar with such reports from the radio and the television, but they are not always very reliable.


The forecast is based on the weather and the amount of pollen currently in the air. The problem is that few data on current pollen levels are available, as it is difficult and time-consuming to obtain them. Ambient air flows onto a piece of adhesive tape, and the pollen sticks there.

Laboratory workers examine the trapped pollen under a light-optical microscope and count the quantities of different grains. This is a tedious procedure and is only carried out at selected locations. A truly reliable forecast would require a closer-knit network of measuring stations.

The German weather service has therefore ordered 15 measuring stations: Researchers at the Fraunhofer Institute for Applied Information Technology FIT and for Toxicology and Experimental Medicine ITEM have developed these in collaboration with scientists working for Helmut Hund GmbH. The innovative feature is the analysis method: The stations determine the pollen composition fully automatically and transmit the data to the weather service. "To do this the stations, which are housed in a large container, ingest a controlled amount of air. The pollen grains contained in this air are cleansed of any impurities and deposited on a carrier," says Prof. Dr. Thomas Berlage, director of Life Science Informatics at FIT.

The object carrier, a thin sheet of glass, is covered with a layer of gel. The pollen grains sink into this gel. A light-optical microscope automatically takes pictures of the pollen. However, there is a difficulty: In these two-dimensional images, the primarily spherical pollen grains – regardless whether they come from birch, hazel or alder trees – are only displayed as circles. When viewed in three dimensions, however, the different types of pollen exhibit differences such as furrows. "To overcome this difficulty, the microscope examines 70 different layers by automatically readjusting the focus 70 times," explains Berlage. In some views the highest point of a pollen is in focus, in others the center. For each level, the system calculates the points that are most clearly pictured.

It then combines all these points to form a two-dimensional image that contains the three-dimensional information – the image shows the "flattened" top half of the pollen. If a pollen grain has a furrow at this point, it can be seen on the image. From this information, the system calculates certain mathematical features, compares these with a database, and determines the type of pollen. The results are available within one or two hours and are transmitted to the weather service via a network connection.

Prof. Dr. Thomas Berlage | EurekAlert!
Further information:
http://www.fit.fraunhofer.de

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>