Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic measuring stations for pollen

04.02.2009
The snow is thawing, the first crocuses are fighting their way through the cold earth into the daylight and hay fever sufferers are already pulling out their handkerchiefs. A new type of measuring station will automatically determine the pollen count and thus improve the forecast.

"And here is the pollen forecast for tomorrow: Low levels of alder and hazel..." – we are all familiar with such reports from the radio and the television, but they are not always very reliable.


The forecast is based on the weather and the amount of pollen currently in the air. The problem is that few data on current pollen levels are available, as it is difficult and time-consuming to obtain them. Ambient air flows onto a piece of adhesive tape, and the pollen sticks there.

Laboratory workers examine the trapped pollen under a light-optical microscope and count the quantities of different grains. This is a tedious procedure and is only carried out at selected locations. A truly reliable forecast would require a closer-knit network of measuring stations.

The German weather service has therefore ordered 15 measuring stations: Researchers at the Fraunhofer Institute for Applied Information Technology FIT and for Toxicology and Experimental Medicine ITEM have developed these in collaboration with scientists working for Helmut Hund GmbH. The innovative feature is the analysis method: The stations determine the pollen composition fully automatically and transmit the data to the weather service. "To do this the stations, which are housed in a large container, ingest a controlled amount of air. The pollen grains contained in this air are cleansed of any impurities and deposited on a carrier," says Prof. Dr. Thomas Berlage, director of Life Science Informatics at FIT.

The object carrier, a thin sheet of glass, is covered with a layer of gel. The pollen grains sink into this gel. A light-optical microscope automatically takes pictures of the pollen. However, there is a difficulty: In these two-dimensional images, the primarily spherical pollen grains – regardless whether they come from birch, hazel or alder trees – are only displayed as circles. When viewed in three dimensions, however, the different types of pollen exhibit differences such as furrows. "To overcome this difficulty, the microscope examines 70 different layers by automatically readjusting the focus 70 times," explains Berlage. In some views the highest point of a pollen is in focus, in others the center. For each level, the system calculates the points that are most clearly pictured.

It then combines all these points to form a two-dimensional image that contains the three-dimensional information – the image shows the "flattened" top half of the pollen. If a pollen grain has a furrow at this point, it can be seen on the image. From this information, the system calculates certain mathematical features, compares these with a database, and determines the type of pollen. The results are available within one or two hours and are transmitted to the weather service via a network connection.

Prof. Dr. Thomas Berlage | EurekAlert!
Further information:
http://www.fit.fraunhofer.de

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>