Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic measuring stations for pollen

04.02.2009
The snow is thawing, the first crocuses are fighting their way through the cold earth into the daylight and hay fever sufferers are already pulling out their handkerchiefs. A new type of measuring station will automatically determine the pollen count and thus improve the forecast.

"And here is the pollen forecast for tomorrow: Low levels of alder and hazel..." – we are all familiar with such reports from the radio and the television, but they are not always very reliable.


The forecast is based on the weather and the amount of pollen currently in the air. The problem is that few data on current pollen levels are available, as it is difficult and time-consuming to obtain them. Ambient air flows onto a piece of adhesive tape, and the pollen sticks there.

Laboratory workers examine the trapped pollen under a light-optical microscope and count the quantities of different grains. This is a tedious procedure and is only carried out at selected locations. A truly reliable forecast would require a closer-knit network of measuring stations.

The German weather service has therefore ordered 15 measuring stations: Researchers at the Fraunhofer Institute for Applied Information Technology FIT and for Toxicology and Experimental Medicine ITEM have developed these in collaboration with scientists working for Helmut Hund GmbH. The innovative feature is the analysis method: The stations determine the pollen composition fully automatically and transmit the data to the weather service. "To do this the stations, which are housed in a large container, ingest a controlled amount of air. The pollen grains contained in this air are cleansed of any impurities and deposited on a carrier," says Prof. Dr. Thomas Berlage, director of Life Science Informatics at FIT.

The object carrier, a thin sheet of glass, is covered with a layer of gel. The pollen grains sink into this gel. A light-optical microscope automatically takes pictures of the pollen. However, there is a difficulty: In these two-dimensional images, the primarily spherical pollen grains – regardless whether they come from birch, hazel or alder trees – are only displayed as circles. When viewed in three dimensions, however, the different types of pollen exhibit differences such as furrows. "To overcome this difficulty, the microscope examines 70 different layers by automatically readjusting the focus 70 times," explains Berlage. In some views the highest point of a pollen is in focus, in others the center. For each level, the system calculates the points that are most clearly pictured.

It then combines all these points to form a two-dimensional image that contains the three-dimensional information – the image shows the "flattened" top half of the pollen. If a pollen grain has a furrow at this point, it can be seen on the image. From this information, the system calculates certain mathematical features, compares these with a database, and determines the type of pollen. The results are available within one or two hours and are transmitted to the weather service via a network connection.

Prof. Dr. Thomas Berlage | EurekAlert!
Further information:
http://www.fit.fraunhofer.de

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>