Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial muscles restore ability to blink, save eyesight

18.01.2010
Surgeons from UC Davis Medical Center have demonstrated that artificial muscles can restore the ability of patients with facial paralysis to blink, a development that could benefit the thousands of people each year who no longer are able to close their eyelids due to combat-related injuries, stroke, nerve injury or facial surgery.

In addition, the technique, which uses a combination of electrode leads and silicon polymers, could be used to develop synthetic muscles to control other parts of the body. The new procedure is described in an article in the January-February issue of the Archives of Facial Plastic Surgery.

"This is the first-wave use of artificial muscle in any biological system," said Travis Tollefson, a facial plastic surgeon in the UC Davis Department of Otolaryngology – Head and Neck Surgery. "But there are many ideas and concepts where this technology may play a role."

In their study, Tollefson and his colleagues were seeking to develop the protocol and device design for human implantation of electroactive polymer artificial muscle (EPAM) to reproducibly create a long-lasting eyelid blink that will protect the eye and improve facial appearance. EPAM is an emerging technology that has the potential for use in rehabilitating facial movement in patients with paralysis. Electroactive polymers act like human muscles by expanding and contracting, based on variable voltage input levels.

For people with other types of paralysis, the use of artificial muscles could someday mean regaining the ability to smile or control the bladder. Reanimating faces is a natural first step in developing synthetic muscles to control other parts of the body, said UC Davis otolaryngologist Craig Senders.

"Facial muscles require relatively low forces, much less than required to move the fingers or flex an arm," said Senders.

Blinking is an essential part of maintaining a healthy eye. The lid wipes the surface of the eye clean and spreads tears across the cornea. Without this lubrication, the eye is soon at risk of developing corneal ulcers that eventually can cause blindness.

Involuntary eye blinking is controlled by a cranial nerve. In most patients with permanent eyelid paralysis, this nerve has been injured due to an accident, stroke, or surgery to remove a facial tumor. Many have no other functioning nerves nearby that can be rerouted to close the eyelid. Others were born with Mobius syndrome, characterized by underdeveloped facial nerves. These patients are expressionless and can neither blink nor smile.

Eyelid paralysis currently is treated by one of two approaches. One is to transfer a muscle from the leg into face. However, this option requires six to10 hours of surgery, creates a second wound, and is not always suitable for elderly or medically fragile patients.

The other treatment involves suturing a small gold weight inside the eyelid. The weight closes the eye with the help of gravity. Though successful in more than 90 percent of patients, the resulting eye blink is slower than normal and cannot be synchronized with the opposite eye. Some patients also have difficulty keeping the weighted lid closed when lying down to sleep. In the United States, an estimated 3,000 to 5,000 patients undergo this surgery every year and therefore might benefit from an alternative treatment.

For their study, Senders and Tollefson used a novel alternative method for eyelid rehabilitation in permanent facial paralysis. They used an eyelid sling mechanism to create an eyelid blink when actuated by an artificial muscle. Using cadavers, the surgeons inserted a sling made of muscle fascia or implantable fabric around the eye. Small titanium screws secured the eyelid sling to the small bones of the eye. The sling was attached to a battery-operated artificial muscle. The artificial muscle device and battery were into a natural hollow or fossa at the temple to disguise its presence.

Senders and Tollefson found that the force and stroke required to close the eyelid with the sling were well within the attainable range of the artificial muscle. This capability may allow the creation of a realistic and functional eyelid blink that is symmetric and synchronous with the normal, functioning blink. A similar system also could give children born with facial paralysis a smile.

The three-layered artificial muscle was developed by engineers at SRI International of Palo Alto, Calif., in the 1990s. Inside is a piece of soft acrylic or silicon layered with carbon grease. When a current is applied, electrostatic attractions causes the outer layers to pull together and squash the soft center. This motion expands the artificial muscle. The muscle contracts when the charge is removed and flattens the shape of the sling, blinking the eye. When the charge is reactivated, the muscle relaxes and the soft center reverts back to its original shape.

"The amount of force and movement the artificial muscle generates is very similar to natural muscle," Tollefson said. An implanted battery source similar to those used in cochlear implants would power the artificial muscle.

For patients who have one functioning eyelid, a sensor wire threaded over the normal eyelid could detect the natural blink impulse and fire the artificial muscle at the same time. Among patients lacking control of either eyelid, an electronic pacemaker similar to those used to regulate heartbeats could blink the eye at a steady rate, and be deactivated by a magnetic switch.

The researchers are now refining the technique on cadavers and animal modes. They estimate the technology will be available for patients within the next five years.

The study was funded by a grant from the American Academy of Facial Plastic and Reconstructive Surgery.

UC Davis School of Medicine is among the nation's leading medical schools, recognized for its specialty-and primary-care programs.The school offers combined medical and master's degree programs in public health, business administration, and rural health, as well as a combined medical and doctoral degree for physician scientists interested in addressing specific scientific, social, ethical and political challenges of health care. Along with being a leader in health-care research, the school is known for its commitment to people from underserved communities and a passion for clinical care. For more information, visit UC Davis School of Medicine.

David Ong | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>