Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Approved cancer drug potentially could help treat diabetes, Stanford researchers find

16.09.2013
A pair of studies by researchers at the Stanford University School of Medicine has identified a molecular pathway — a series of interaction among proteins — involved in the development of diabetes. Furthermore, they have found that a drug already approved for use in humans can regulate the pathway.

The findings will be published online Sept. 15 in two articles in Nature Medicine.

The studies, done in mice, identify a previously unexpected link between a low-oxygen condition called hypoxia and the ability of cells in the liver to respond to insulin. The drug, aflibercept (marketed as Eylea or Zaltrap), is used to treat metastatic colorectal cancer and a form of macular degeneration. Aflibercept is a member of a family of proteins that inhibit the vascular endothelial growth factor, or VEGF, pathway. It works by blocking the growth of the blood vessels into tumors and starving them of oxygen.

The lab of Calvin Kuo, MD, PhD, professor of medicine, identified a series of protein interactions that link VEGF inhibitors and blood glucose levels. "We were surprised to find that this drug currently used in patients for cancer treatment had beneficial effects on diabetes in laboratory mice and could, potentially, in humans," said Kuo, senior author of one of the Nature Medicine papers.

Amato Giaccia, PhD, the Jack, Lulu and Sam Willson Professor of Cancer Biology, is senior author of the other paper. "Proteins involved in this pathway could also be targeted for the development of new diabetes therapies," said Giaccia, who also is a professor and director of radiation oncology. His laboratory has identified a protein called PhD3 that could be a particularly attractive target.

The lead author of the Giaccia paper is Cullen Taniguchi MD, PhD, a radiation oncology resident at Stanford; former graduate students Kevin Wei, MD, PhD, and Lisa McGinnis, MD, PhD, and postdoctoral scholar Stephanie Piecewicz, PhD, are lead authors of the Kuo paper.

Together, the studies explain an observation made several years ago by Kuo and his lab members that VEGF inhibitors, such as aflibercept, could lower blood glucose levels in mice. There have been intriguing hints that these inhibitors could function in a similar way in humans, but human studies have not been formally conducted.

"Anecdotally, there have been reports that diabetic patients who have been prescribed VEGF inhibitors to treat their cancer are better able to control their diabetes," Kuo said.

The liver is commonly known as the organ responsible for removing toxins from our blood. But it also serves as the body's energy warehouse. After a meal, blood glucose levels rise and insulin triggers cells in the liver to squirrel away the glucose in long, branching chains of a substance called glycogen (imagine an ever-growing Lego structure, where each block is a glucose molecule). When we are asleep or fasting, the liver breaks down that Lego structure unit by unit to deliver glucose into the blood for cells to use as an energy source until the next meal.

When this process goes awry, blood glucose levels can become dangerously high. This can happen when the body either can't make insulin (in the case of type-1, or juvenile, diabetes) or when it can't respond appropriately to the insulin the body does make (type-2 diabetes).

The liver's critical function requires that most of its cells have ready access to blood, which carries both glucose and oxygen. Oxygen diffuses as a gradient outward from blood vessels; those cells that are more removed have less oxygen and can become hypoxic. Hypoxic cells naturally produce certain proteins to enable them to live and function under these more severe conditions.

Wei, McGinnis and Piecewicz, in Kuo's lab, found that one protein induced by hypoxia, HIF-2alpha, activates the expression of insulin receptor substrate 2. IRS2 enhances the ability of the cells to respond to insulin. Treatment of normal and diabetic laboratory mice with a variety of VEGF inhibitors, including aflibercept, causes regression of blood vessels and increases the number of hypoxic cells in the liver. As a result, HIF-2alpha levels increase, IRS2 expression rises and the animals become better able to tolerate increases in blood-glucose levels.

The researchers found that deletion of HIF-2alpha blocked the effect of the VEGF inhibitors, while liver-specific induction of HIF-2alpha expression also significantly improved the animals' glucose tolerance.

"Much work remains to translate these mouse studies to human patients, but it will be interesting to explore VEGF inhibitors or drugs that can stabilize HIF-2alpha, such as prolyl hydroxylase inhibitors, for diabetes treatment, possibly in combination with pre-existing therapies to minimize toxicities," Kuo said.

Taniguchi, in Giaccia's lab, focused on the biology of HIF-2alpha. He and his colleagues found that blocking the expression of a protein called Phd3 specifically taps into the pathway identified by the Kuo group, stabilizing the HIF-2alpha protein and prolonging its effect on IRS2 expression. Laboratory mice missing Phd3 are more sensitive to insulin and exhibit improved glucose tolerance.

The specificity of the effect of Phd3 on HIF-2alpha is important. Because it doesn't appear to regulate other proteins in the HIF family in the liver, it's possible a diabetes treatment could be designed that would avoid unwanted or dangerous side effects that could occur by blocking the production of a more broadly acting protein.

"Targeting the Phd3/HIF-2 pathway represents a new therapeutic approach for the treatment of diabetes with little toxicity," said Giaccia. "These studies indicate that Phd specific inhibitors, especially Phd3, should be more widely developed for clinical development."

Additional Stanford authors of the papers were research assistant David Kuo; basic life sciences research associates Jenny Yuan and Mario Vallon; assistant professor of medicine Justin Annes, MD, PhD; and postdoctoral scholars Elizabeth Finger, PhD, Colleen Wu, PhD, Anh Diep, VMD, and Edward LaGory, PhD.

Funding for the studies was provided by the National Institutes of Health (grants R01HL074267, R01NS064517, R01CA158528, 1R01HL074267, RO1DK043748, P60DK020593, U24DK059637 CA67166 and CA88480); the National Cancer Institute (grant CA121940); Radiological Society of North America Resident Research Grants; the Canadian Institutes of Health and Research; the National Institute of General Medical Sciences (grants GM104936 and GM007365); the Sydney Frank Foundation; Stanford's Medical Scientist Training Program; and Stanford training-program grants in comparative animal medicine, cardiovascular medicine, molecular and cellular immunobiology, and molecular endocrinology.

Regeneron Pharmaceuticals, Sanofi and Genentech provided reagents for the Kuo study. Three co-authors of the Kuo study are employees at Regeneron, which manufactures aflibercept.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Print media contact: Krista Conger at (650) 725-5371 (kristac@stanford.edu)
Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>