Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant beta-carotene use safe during radiation treatment for prostate cancer

01.06.2012
Despite past safety concerns, the antioxidant supplement beta-carotene, is safe to use during radiation therapy treatments for prostate cancer and does not increase the risk of prostate cancer death or metastases, according to a study in the May issue of the International Journal of Radiation Oncology•Biology•Physics, the official scientific journal of the American Society for Radiation Oncology (ASTRO).
The use of vitamin supplements and antioxidants is common, but the safety of using antioxidant supplements during radiation treatments for prostate cancer is controversial. Radiation therapy relies on the pro-oxidant effects of DNA, which involves damaging tumor cells while leaving normal cells unharmed. However, some scientists have suggested that supplemental antioxidants may weaken the oxidizing effects of radiation and potentially lead to cancer recurrence.

In the largest study to date of its kind, researchers followed 383 prostate cancer patients who were randomized to receive beta-carotene or placebo to determine if antioxidants could potentially counteract the pro-oxidant effects of radiation therapy and increase a patient's risk of death or metastases. The primary endpoint was prostate cancer death or bone metastases.

Researchers found no significant differences in lethal outcomes among the patients who took the antioxidant beta-carotene versus those who did not.

"This study shows that antioxidant supplementation with beta-carotene during radiation therapy does not appear to detract from the benefit of radiation therapy." Danielle Margalit, MD, MPH, lead author of the study and a radiation oncologist at the Dana-Farber Cancer Institute in Boston, said. "It also suggests that patients may continue to eat a well-balanced diet that contains foods with natural sources of antioxidants at the recommended daily amount."

ASTRO is the largest radiation oncology society in the world, with more than 10,000 members who specialize in treating patients with radiation therapies. As the leading organization in radiation oncology, biology and physics, the Society is dedicated to improving patient care through education, clinical practice, advancement of science and advocacy. For more information on radiation therapy, visit www.rtanswers.org. To learn more about ASTRO, visit www.astro.org.

Nicole Napoli | EurekAlert!
Further information:
http://www.astro.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>