Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antidepressant shows promise as cancer treatment

12.03.2012
A retinoid called all-trans retinoic acid (ATRA), which is a vitamin A-derivative, is already used successfully to treat a rare sub-type of acute myeloid leukemia (AML), however this drug has not been effective for the more common types of AMLs.

Team leader Arthur Zelent, Ph.D., and colleagues at the ICR have been working to unlock the potential of retinoids to treat other patients with AML. In a paper published in Nature Medicine today, they show that the key could be an antidepressant called tranylcypromine (TCP).

"Retinoids have already transformed one rare type of fatal leukemia into a curable disease. We've now found a way to harness these powerful drugs to treat far more common types of leukemia," senior author Dr. Zelent, from the ICR, said. "Until now, it's been a mystery why the other forms of AML don't respond to this drug. Our study revealed that there was a molecular block that could be reversed with a second drug that is already commonly used as an antidepressant. We think this is a very promising strategy, and if these findings can be replicated in patients the potential benefits are enormous."

ATRA works by encouraging the leukemia cells to mature and die naturally. The team thinks the failure of AML to respond to this drug may be due to genes that ATRA normally targets becoming switched off. In their search for a drug that could be used to reboot the activity of ATRA, the team looked to an emerging area of research called epigenetics. Epigenetic drugs do not target genes directly but instead target whether genes are switched on or off. They discovered that inhibiting an enzyme called LSD1, using TCP, could switch these genes on again and make the cancer cells susceptible to ATRA.

Along with collaborators at the University of Münster in Germany, the team have already started a Phase II clinical trial of the drug combination in acute myeloid leukemia patients.

Co-author Kevin Petrie, Ph.D., from the ICR says, "Both the retinoid ATRA and the antidepressant TCP are already available in the UK and off-patent, so these drugs should not be expensive for the health service. AML remains very difficult to treat and sadly is often fatal, with rates of the disease projected to increase significantly as the population ages, so it is particularly pleasing to have identified this new treatment approach. Importantly, we believe these drugs are targeting only the cancer cells and leaving normal healthy cells largely untouched, so we are hopeful that they would have fewer side-effects for patients than standard drugs. We look forward to seeing the results of the clinical trials."

Samuel Waxman, M.D., the Founder and the Scientific Director of the Samuel Waxman Cancer Research Foundation added, "The Samuel Waxman Cancer Research Foundation has supported the work of Arthur Zelent for more than a decade. This major finding is the direct result of years of collaborative research to better understand the mechanism of action using a combination therapy of drugs that are already available on the market today, which may lead to faster cures for patients."

The study was a collaboration between scientists at the ICR, Cardiff University and Queen's University, Belfast, in the UK; John Hopkins University, Baltimore, Progen Pharmaceuticals and Medical University of South Carolina in the US; the University Health Network and the University of Toronto in Canada; and the University of Münster in Germany. It was funded in the UK by Leukaemia & Lymphoma Research along with the Samuel Waxman Cancer Research Foundation.

The Institute of Cancer Research (ICR) is one of the world's most influential cancer research institutes.

Scientists and clinicians at the ICR are working every day to make a real impact on cancer patients' lives. Through its unique partnership with The Royal Marsden Hospital and 'bench-to-bedside' approach, the ICR is able to create and deliver results in a way that other institutions cannot. Together the two organisations are rated in the top four cancer centres globally.

The ICR has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it leads the world at isolating cancer-related genes and discovering new targeted drugs for personalised cancer treatment.

As a college of the University of London, the ICR provides postgraduate higher education of international distinction. It has charitable status and relies on support from partner organisations, charities and the general public.

The ICR's mission is to make the discoveries that defeat cancer. For more information visit http://www.icr.ac.uk

Leukaemia & Lymphoma Research

Leukaemia & Lymphoma Research is the only UK charity solely dedicated to research into blood cancers, including leukaemia, lymphoma and myeloma. Around 30,000 people of all ages, from children and teenagers to adults are diagnosed with a blood cancer in the UK every year.

We receive no government funding and rely entirely on voluntary support. In the next five years we need to raise £120 million to continue our lifesaving research. Further information, including patient information booklets, is available from http://www.beatingbloodcancers.org.uk or on 020 7405 0101.

The Samuel Waxman Cancer Research Foundation

The Samuel Waxman Cancer Research Foundation is an international organization dedicated to curing and preventing cancer. The Foundation is a pioneer in cancer research, focusing on uncovering the causes of cancer and reprogramming cancer cells.

We dedicate ourselves to delivering tailored, minimally toxic treatments to patients. Our mission is to eradicate cancer by bridging the gap between lab science and the patient.

Through our collaborative group of world-class scientists, the Institute Without Walls, investigators share information and tools to speed the pace of cancer research. Since our inception in 1976, the Foundation has awarded more than $75 million to support the work of nearly 200 researchers across the globe. Visit http://www.waxmancancer.org

Jenny Song | EurekAlert!
Further information:
http://www.waxmancancer.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>