Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active ingredients in marijuana found to spread and prolong pain

18.08.2009
Research has implications for medical use of drug and concepts of chronic pain

Imagine that you're working on your back porch, hammering in a nail. Suddenly you slip and hit your thumb instead — hard. The pain is incredibly intense, but it only lasts a moment. After a few seconds (and a few unprintable words) you're ready to start hammering again.

How can such severe pain vanish so quickly? And why is it that other kinds of equally terrible pain refuse to go away, and instead torment their victims for years?

University of Texas Medical Branch at Galveston researchers think they've found at least part of the answer—and believe it or not, it's in a group of compounds that includes the active ingredients in marijuana, the cannabinoids. Interestingly enough, given recent interest in the medical use of marijuana for pain relief, experiments with rodents and humans described in a paper published in the current issue of Science suggest these "endocannabinoids," which are made within the human body, can actually amplify and prolong pain rather than damping it down.

"In the spinal cord there's a balance of systems that control what information, including information about pain, is transmitted to the brain," said UTMB professor Volker Neugebauer, one of the authors of the Science article, along with UTMB senior research scientist Guangchen Ji and collaborators from Switzerland, Hungary, Japan, Germany, France and Venezuela. "Excitatory systems act like a car's accelerator, and inhibitory ones act like the brakes. What we found is that in the spinal cord endocannabinoids can disable the brakes."

To get to this conclusion, the researchers began by studying what happened when they applied a biochemical mimic of an endocannabinoid to inhibitory neurons (the brakes, in Neugebauer's analogy) on slices of mouse spinal cord. Electrical signals that would ordinarily have elicited an inhibitory response were ignored. They then repeated the procedure using slices of spinal cord from mice genetically engineered to lack receptors where the endocannabinoid molecules could dock, and found that in that case, the "brakes" worked. Finally, using electron microscopy, they confirmed that the receptors were in fact on inhibitory, not excitatory neurons. Endocannabinoids docking with them would suppress the inhibitor neurons, and leave pain signals with a straight shot to the brain.

"The next step was to make the leap from spinal slices to test whether this really had anything to do with pain," Neugebauer said. Using anesthetized rats, he recorded the spinal cord electrical activity produced by an injection in the hindpaw of capsaicin– a chemical found in hot peppers that produces a level of pain he compared to a severe toothache. Although the rats were unconscious, pain impulses could be detected racing up their spinal cords. What's more, formerly benign stimuli now generated a significant pain response — a response that stopped when the rats were treated with an endocannabinoid receptor blocker.

"Why was this non-painful information now gaining access to the spinal "pain" neurons?" Neugebauer said. "The capsaicin produced an overstimulation that led to the peripheral nerves releasing endocannabinoids, which activated receptors that shut down the inhibitor neurons, leaving the gates wide open."

Finally, the researchers recruited human volunteers to determine whether a compound that blocked endocannabinoid receptors would have an effect on the increased sensitivity to pain (hyperalgesia) and tendency for normally non-painful stimuli to induce pain (allodynia) often reported in areas of the body near where acute pain had been inflicted. In this case, the researchers induced pain by passing electricity through the volunteers' left forearms, with the intensity of the current set by each volunteer to a 6 on a scale of 1 to 10. At a second session a month later, the volunteers who had received the receptor blocker showed no reduction in perceived acute pain, but had significantly less hyperalgesia and allodynia — a result that matched up well with the endocannabinoid hypothesis.

"To sum up, we've discovered a novel mechanism that can transform transient normal pain into persistent chronic pain," Neugebauer said. "Persistent pain is notoriously difficult to treat, and this study offers insight into new mechanisms and possibly a new target in the spinal cord."

It also raises questions about the efficacy of marijuana in relieving acute pain, given that endocannabinoids and the cannabinoids found in marijuana are so biochemically similar. "If you had a toothache, you probably wouldn't want to treat it with marijuana, because you could actually make it worse," Neugebauer said. "Now, for more pathological conditions like neuropathic pain, where the problem is a dysfunction within the nerves themselves and a subsequent disturbance throughout the nervous system that's not confined to the pain system, marijuana may be beneficial. There are studies that seem to show that. But our model shows cannabinoids over-activating the pain system, and it just doesn't seem like a good idea to further increase this effect."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>