Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A solution to sinusitis from the sea

19.02.2013
A team of scientists and surgeons from Newcastle are developing a new nasal spray from a marine microbe to help clear chronic sinusitis.

They are using an enzyme isolated from a marine bacterium Bacillus licheniformis found on the surface of seaweed which the scientists at Newcastle University were originally researching for the purpose of cleaning the hulls of ships.

Publishing in PLOS ONE, they describe how in many cases of chronic sinusitis the bacteria form a biofilm, a slimy protective barrier which can protect them from sprays or antibiotics. In vitro experiments showed that the enzyme, called NucB dispersed 58% of biofilms.

Dr Nicholas Jakubovics of Newcastle University said: "In effect, the enzyme breaks down the extracellular DNA, which is acting like a glue to hold the cells to the surface of the sinuses. In the lab, NucB cleared over half of the organisms we tested."

Sinusitis with or without polyps is one of the most common reasons people go to their GP and affects more than 10% of adults in the UK and Europe. Mr Mohamed Reda Elbadawey, Consultant of Otolaryngology Head and Neck Surgery, Freeman Hospital – part of the Newcastle Hospitals NHS Foundation Trust – was prompted to contact the Newcastle University researchers after a student patient mentioned a lecture on the discovery of NucB and they are now working together to explore its medical potential.

Mr Elbadawey said: "Sinusitis is all too common and a huge burden on the NHS. For many people, symptoms include a blocked nose, nasal discharge or congestion, recurrent headaches, loss of the sense of smell and facial pain. While steroid nasal sprays and antibiotics can help some people, for the patients I see, they have not been effective and these patients have to undergo the stress of surgery. If we can develop an alternative we could benefit thousands of patients a year."

In the research, the team collected mucous and sinus biopsy samples from 20 different patients and isolated between two and six different species of bacteria from each individual. 24 different strains were investigated in the laboratory and all produced biofilms containing significant amounts of extracellular DNA. Biofilms formed by 14 strains were disrupted by treatment with the novel bacterial deoxyribonuclease, NucB.

When under threat, bacteria shield themselves in a slimy protective barrier. This slimy layer, known as a biofilm, is made up of bacteria held together by a web of extracellular DNA which adheres the bacteria to each other and to a solid surface – in this case in the lining of the sinuses. The biofilm protects the bacteria from attack by antibiotics and makes it very difficult to clear them from the sinuses.

In previous studies of the marine bacterium Bacillus licheniformis, Newcastle University scientists led by marine microbiologist Professor Grant Burgess found that when the bacteria want to move on, they release an enzyme which breaks down the external DNA, breaking up the biofilm and releasing the bacteria from the web. When the enzyme NucB was purified and added to other biofilms it quickly dissolved the slime exposing the bacterial cells, leaving them vulnerable.

The team's next step is to further test and develop the product and they are looking to set up collaboration with industry.

Karen Bidewell | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>