Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A solution to sinusitis from the sea

19.02.2013
A team of scientists and surgeons from Newcastle are developing a new nasal spray from a marine microbe to help clear chronic sinusitis.

They are using an enzyme isolated from a marine bacterium Bacillus licheniformis found on the surface of seaweed which the scientists at Newcastle University were originally researching for the purpose of cleaning the hulls of ships.

Publishing in PLOS ONE, they describe how in many cases of chronic sinusitis the bacteria form a biofilm, a slimy protective barrier which can protect them from sprays or antibiotics. In vitro experiments showed that the enzyme, called NucB dispersed 58% of biofilms.

Dr Nicholas Jakubovics of Newcastle University said: "In effect, the enzyme breaks down the extracellular DNA, which is acting like a glue to hold the cells to the surface of the sinuses. In the lab, NucB cleared over half of the organisms we tested."

Sinusitis with or without polyps is one of the most common reasons people go to their GP and affects more than 10% of adults in the UK and Europe. Mr Mohamed Reda Elbadawey, Consultant of Otolaryngology Head and Neck Surgery, Freeman Hospital – part of the Newcastle Hospitals NHS Foundation Trust – was prompted to contact the Newcastle University researchers after a student patient mentioned a lecture on the discovery of NucB and they are now working together to explore its medical potential.

Mr Elbadawey said: "Sinusitis is all too common and a huge burden on the NHS. For many people, symptoms include a blocked nose, nasal discharge or congestion, recurrent headaches, loss of the sense of smell and facial pain. While steroid nasal sprays and antibiotics can help some people, for the patients I see, they have not been effective and these patients have to undergo the stress of surgery. If we can develop an alternative we could benefit thousands of patients a year."

In the research, the team collected mucous and sinus biopsy samples from 20 different patients and isolated between two and six different species of bacteria from each individual. 24 different strains were investigated in the laboratory and all produced biofilms containing significant amounts of extracellular DNA. Biofilms formed by 14 strains were disrupted by treatment with the novel bacterial deoxyribonuclease, NucB.

When under threat, bacteria shield themselves in a slimy protective barrier. This slimy layer, known as a biofilm, is made up of bacteria held together by a web of extracellular DNA which adheres the bacteria to each other and to a solid surface – in this case in the lining of the sinuses. The biofilm protects the bacteria from attack by antibiotics and makes it very difficult to clear them from the sinuses.

In previous studies of the marine bacterium Bacillus licheniformis, Newcastle University scientists led by marine microbiologist Professor Grant Burgess found that when the bacteria want to move on, they release an enzyme which breaks down the external DNA, breaking up the biofilm and releasing the bacteria from the web. When the enzyme NucB was purified and added to other biofilms it quickly dissolved the slime exposing the bacterial cells, leaving them vulnerable.

The team's next step is to further test and develop the product and they are looking to set up collaboration with industry.

Karen Bidewell | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>