Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A home early warning system for cardiac patients

Heart disease is the number one cause of death in Europe and early diagnosis is essential to save lives.

Monitoring the heart’s rhythm and electrical activity in real time using an electrocardiogram (ECG) provides vital information about abnormalities and gives clues to the nature of a problem.

Some cardiac conditions need long-term monitoring — inconvenient for patients as it requires them to be away from their everyday environment for indeterminate periods of time.

Six years ago, Latvian company Integris Ltd, a specialist in the development of mobile wireless telemedicine ECG recording devices, came up with the concept of an inexpensive, real-time heart activity monitor for personal use. Initially, the wireless technologies available were not a practical option for the device Integris had in mind, but when hybrid chips came onto the market EUREKA project E! 3489 HEART GUARD was born.

The HEART GUARD system comprises a lightweight, simple to use, matchbox-size device with five electrodes that are strategically placed on the wearer’s chest. The wireless device transmits data in real time directly to the patient’s pocket computer or desktop PC for instant interpretation by the system’s unique software. The low-cost device is discreet enough to be worn 24 hours a day, recording, analysing and reporting not only the rhythm and electrical activity of a patient’s heart but also his physical activity and body positions, as they go about their daily life.

‘Effectively, it is an early warning system,’ explains Juris Lauznis, Director of Integris, the project’s lead partner. ‘If HEART GUARD detects a problem, patients are alerted by means of vibration or a buzzer, prompting them to check their PC for further information and advice. At the very least, the device will help to monitor and manage a patient’s condition – and it could even save a life.’

Currently HEART GUARD is being developed for home use only, with patients monitoring their own condition and only contacting a doctor or hospital if the system identifies a cause for concern. HEART GUARD also has applications in a number of other areas, including telemedicine, sports medicine, patient rehabilitation following cardiac surgery or a heart attack and as a low-cost ECG monitoring system in hospitals and clinics with limited budgets.

With the 30-month project completed and clinical trials of the prototype successfully concluded by Kaunas Medical University’s Institute of Cardiology, the Lithuania Academy of Physical Education and the Research Institute of Cardiology at the University of Latvia, the next steps are to satisfy the EU’s strict compliance requirements for medical devices and then source a company to manufacture and distribute the system. If successful, the first commercial HEART GUARD devices could be on the market and saving lives by the end of 2008 or early 2009.

More information:
Juris Lauznis, Integris Ltd
Aizkraukles Str 21, LV-1006 Riga, Latvia.
Tel : +371 675 58 738, Fax : +371 675 41 218,, visit

Catherine Simmons | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>