Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

5 big strides to fight lung disease in our tiniest patients

04.12.2012
For Ottawa scientist and neonatologist Dr. Bernard Thébaud, even a major paper that answers five significant questions still doesn't seem quite enough in his determined path to get his laboratory breakthrough into the neonatal intensive care unit (NICU). Dr. Thébaud's proposed therapy would use stem cells from umbilical cords to treat a disease previously thought to be untreatable — bronchopulmonary dysplasia, or BPD.

"BPD is a lung disease described 45 years ago in which we have made zero progress. And now, with these cord-derived stem cells there is a true potential for a major breakthrough," says Dr. Thébaud, a senior scientist at the Ottawa Hospital Research Institute and CHEO Research Institute, a neonatologist at CHEO and The Ottawa Hospital, and a professor in the Faculty of Medicine at the University of Ottawa.


These are micro-tomography scans of blood vessels in the lung. Image A shows a normal lung. Image B shows the injury caused by oxygen. Image C shows a lung given oxygen and treated with stems cells from a human umbilical cord.

Credit: Dr. Bernard Thébaud

"I am confident that we have the talent and the tools here at CHEO and OHRI to find a treatment for BPD. These findings published today are helping us get there," continues Thébaud.

BPD affects approximately 10,000 very premature newborns in Canada and the U.S. every year. The lungs of these infants are not developed enough to sustain them, so they must receive oxygen through a breathing machine. However, this combination of mechanical ventilation and oxygen damages the lungs and stops their development. In addition, longer stays in the NICU for these extremely premature babies affect the normal development of other parts of the body, including the retina, the kidneys and the brain.

Today in the journal Thorax, Dr. Thébaud's team provides significant findings in experiments with newborn rats given oxygen. The lung development of a newborn rat mimics that of a premature baby born at 24 weeks. The five major findings reported in Thorax are:

- Stem cells called mesenchymal stromal cells (MSCs) from a human umbilical cord (not the blood) have a protective effect on the lungs when injected into the lungs as they were put on oxygen.

- MSCs had a reparative effect when injected two weeks after being on oxygen.

- When conditioned media — a cell-free substance produced by MSCs — was administered instead of MSCs, it was found to have the same protective and reparative effects as the stem cells.

- When examined after six months (the equivalent of 40 human years), treated animals had better exercise performance and persistent benefit in lung structure.

- MSCs did not adversely affect the long-term health of normal rats. One of the concerns about stem cells is that by promoting cell growth, they may cause cancerous growth. To address this question, Dr. Thébaud gave MSCs to a control group that was not treated with oxygen. When examined after six months, these animals were normal and healthy.

Within two years, Dr. Thébaud wants to be talking about a pilot study with 20 human patients showing that this stem-cell therapy is feasible and safe, and in four years he wants to embark on a randomized control trial. These are all steps in his profound desire to help the babies he sees in the NICU with BPD, and he is confident a treatment will be developed.

"It's going to happen here in Ottawa, but for babies worldwide," says Dr. Thébaud.

The full article "Short, Long-term and Paracrine Effect of Human Umbilical Cord-derived Stem Cells in Lung Injury Prevention and Repair in Experimental BPD" was published online first by Thorax on December 4, 2012. This work was a collaborative project with a group in Milano, Italy.

Funding for this study was provided by the Canadian Institutes of Health Research, the Maternal-Fetal Neonatal Training Program sponsored by CIHR's Institute of Human Development, Child and Youth Health, the Alberta Heritage Foundation for Medical Research/Alberta Innovates Health Solutions, the Canadian Foundation for Innovation, the Canada Research Chairs Program, the Stollery Children's Hospital Foundation, the 6FP EU Project – THERCORD and the 7FP EU Project – CASCADE and REBORNE.

Media Contacts
Paddy Moore, OHRI, 613-232-5680 (cell), padmoore@ohri.ca
Adrienne Vienneau, CHEO RI, 613-737-7600 x 4144, 613-513-8437 (cell), avienneau@cheo.on.ca
Néomie Duval, uOttawa, 613-562-5800 x 298, 613-863-7221 (cell), neomie.duval@uottawa.ca

About the Ottawa Hospital Research Institute The Ottawa Hospital Research Institute (OHRI) is the research arm of The Ottawa Hospital and is an affiliated institute of the University of Ottawa, closely associated with the university's Faculties of Medicine and Health Sciences. OHRI includes more than 1,700 scientists, clinical investigators, graduate students, postdoctoral fellows and staff conducting research to improve the understanding, prevention, diagnosis and treatment of human disease. www.ohri.ca.

About the CHEO Research Institute Established in 1984, the CHEO Research Institute coordinates the research activities of the Children's Hospital of Eastern Ontario (CHEO) and is one of the institutes associated with the University of Ottawa teaching hospitals. The Research Institute brings together health professionals from within CHEO to share their efforts in solving pediatric health problems. It also promotes collaborative research outside the hospital with partners from the immediate community, industry and the international scientific world. For more information, please visit www.cheori.org.

About the University of Ottawa The University of Ottawa is committed to research excellence and encourages an interdisciplinary approach to knowledge creation, which attracts the best academic talent from across Canada and around the world. It is an important stakeholder in the National Capital Region's economic development.

Paddy Moore | EurekAlert!
Further information:
http://www.ohri.ca

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>