Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TECNALIA investigates advanced biomaterials to make more reliable and hardwearing medical implants

12.11.2008
The TECNALIA Technological Corporation is taking part in the Cénit Intelimplant project, the goal of which is to develop advanced biomaterials based on innovative technologies (microtechnologies, nanotechnologies, tissue and surface engineering) for the manufacture of a new generation of implants which have greater durability and reliability, need less recuperation time and that provide data on their state and progress.

The Cénit Intelimplant project (Development of Advanced Biomaterials for a New Generation of Implants), led by the Biotechnology Institute (BTI), was one of the 16 projects approved by the Centre for Industrial Technological Development (CDTI) for the third CÉNIT programme announcement or call, within the Spanish Government INGENIO 2010 initiative.

The end goal of the project is the development of novel biomaterials which enable an extension of the functions of the implant throughout the whole life of the patient, in such a way that repeat surgical operations are avoided; the reliability and the integration of the implants are enhanced and tissue rejection avoided; the recuperation times for patients are significantly cut and the implants are operational in a minimum time; the state and progress of the implant monitored, both in the short term and in the long term after the surgical operation; the new materials will indicate any anomaly and enable the application of preventative therapies; and finally, they will simplify surgical practice, progressing to minimally invasive surgery and the automation of stages during an operation.

The project will be undertaken by a consortium made up of 15 companies, including state-of-the-art Spanish enterprises in the field of implants, BTI Biotechnology Institute, SURGIVAL, LAFITT, SOCINSER and IHT, as well as the most important ones in the value chain of their manufacture: KERAMAT, Laboratories INIBSA, BIOKER Research, METAL-ESTALKI, BIOVAC, DMP, i2m-DESIGN, ANÁLISIS & SIMULACIÓN (AyS), IHS WEIGLING and GEM-IMAGING.

The Intelimplant project involves groups belonging to 16 public and private research bodies: TECNALIA, the Institute of Biomechanics of Valencia-IBV, the Institute of Polymers Science and Technology (ICTP-CSIC), the University of León, the University of Vigo, the University of Málaga, the National Microelectronics Centre (CNM-CSIC), the Institute for Corpuscular Physics (IFIC-CSIC), the Institute of Ceramica Galicia, the Polytechnic University of Catalunya (UPC), PRODINTEC, INCAR, ICMM-CSIC, the University of Barcelona, the Bosch i Gimpera Foundation and the Chemical Institute of Sarriá (IQS).

Carrying out this project will also enable fomenting synergies and reducing project development times through drawing up a joint-working framework between the various multidisciplinary players within the Science-Technology-Enterprise network.

These players have knowledge and experience that complement each other and which are present throughout the whole value chain of the sector and, as a consequence, will give rise to enhanced competitiveness amongst the participating companies, thus reducing excessive external dependence, readdressing the unfavourable situation of our country as regards the transfer of research results by OPIs and CITs to companies in this field of advanced biomaterials, and improving the scientific-technical level of the enterprises taking part in the project.

All this with the target of being in a more advantageous position to participate in international programmes of cooperation in scientific research and technological development, such as the FP VII.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1941&hizk=I

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>