Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TECNALIA investigates advanced biomaterials to make more reliable and hardwearing medical implants

12.11.2008
The TECNALIA Technological Corporation is taking part in the Cénit Intelimplant project, the goal of which is to develop advanced biomaterials based on innovative technologies (microtechnologies, nanotechnologies, tissue and surface engineering) for the manufacture of a new generation of implants which have greater durability and reliability, need less recuperation time and that provide data on their state and progress.

The Cénit Intelimplant project (Development of Advanced Biomaterials for a New Generation of Implants), led by the Biotechnology Institute (BTI), was one of the 16 projects approved by the Centre for Industrial Technological Development (CDTI) for the third CÉNIT programme announcement or call, within the Spanish Government INGENIO 2010 initiative.

The end goal of the project is the development of novel biomaterials which enable an extension of the functions of the implant throughout the whole life of the patient, in such a way that repeat surgical operations are avoided; the reliability and the integration of the implants are enhanced and tissue rejection avoided; the recuperation times for patients are significantly cut and the implants are operational in a minimum time; the state and progress of the implant monitored, both in the short term and in the long term after the surgical operation; the new materials will indicate any anomaly and enable the application of preventative therapies; and finally, they will simplify surgical practice, progressing to minimally invasive surgery and the automation of stages during an operation.

The project will be undertaken by a consortium made up of 15 companies, including state-of-the-art Spanish enterprises in the field of implants, BTI Biotechnology Institute, SURGIVAL, LAFITT, SOCINSER and IHT, as well as the most important ones in the value chain of their manufacture: KERAMAT, Laboratories INIBSA, BIOKER Research, METAL-ESTALKI, BIOVAC, DMP, i2m-DESIGN, ANÁLISIS & SIMULACIÓN (AyS), IHS WEIGLING and GEM-IMAGING.

The Intelimplant project involves groups belonging to 16 public and private research bodies: TECNALIA, the Institute of Biomechanics of Valencia-IBV, the Institute of Polymers Science and Technology (ICTP-CSIC), the University of León, the University of Vigo, the University of Málaga, the National Microelectronics Centre (CNM-CSIC), the Institute for Corpuscular Physics (IFIC-CSIC), the Institute of Ceramica Galicia, the Polytechnic University of Catalunya (UPC), PRODINTEC, INCAR, ICMM-CSIC, the University of Barcelona, the Bosch i Gimpera Foundation and the Chemical Institute of Sarriá (IQS).

Carrying out this project will also enable fomenting synergies and reducing project development times through drawing up a joint-working framework between the various multidisciplinary players within the Science-Technology-Enterprise network.

These players have knowledge and experience that complement each other and which are present throughout the whole value chain of the sector and, as a consequence, will give rise to enhanced competitiveness amongst the participating companies, thus reducing excessive external dependence, readdressing the unfavourable situation of our country as regards the transfer of research results by OPIs and CITs to companies in this field of advanced biomaterials, and improving the scientific-technical level of the enterprises taking part in the project.

All this with the target of being in a more advantageous position to participate in international programmes of cooperation in scientific research and technological development, such as the FP VII.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1941&hizk=I

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>