Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens presents new product lines for angiography

26.11.2012
The Artis Q and Artis Q.zen introduce groundbreaking new X-ray tube and detector technology

Siemens Healthcare has developed a revolutionary new X-ray tube and detector technology for its Artis Q and Artis Q.zen angiography systems to improve minimally invasive therapy of diseases such as coronary artery disease, stroke and cancer.



In both the Artis Q and Artis Q.zen series, the new X-ray tube can help to identify small vessels up to 70 percent better than conventional X-ray tube technology. The Artis Q.zen combines this innovative X-ray source with a new detector technology that supports interventional imaging in ultra-low-dose ranges.

This protects patients, doctors and medical staff, especially during longer interventions. With these new developments, presented for the first time at the 98th Congress of the Radiological Society of North America (RSNA), Siemens Healthcare has once again demonstrated its innovative strength and market competitiveness as part of its Agenda 2013 global Sector initiative.

Two hardware components are crucial for angiographic image quality: the X-ray tube and the detector. The X-rays emitted by the tube pass through the patient and hit the detector, which converts them to image signals.

The second generation of Siemens' flat emitter technology is key to the advances made in the X-ray tube for the Artis Q and Artis Q.zen product lines. Instead of the coiled filaments used in conventional X-ray tubes, flat emitter technology is used exclusively in the new tube to emit electrons. Flat emitters enable smaller quadratic focal spots that lead to improved visibility of small vessels by up to 70 percent. Both physicians and patients benefit from a high level of detail in imaging-supported interventional therapy. Neurologists can more precisely measure the blood circulation in specific areas of the brain, for example; while stenoses in the heart's smallest blood vessels can be spotted in coronary angiography.

Examinations using ultra-low dose radiation

The Artis Q.zen series combines the X-ray tube with a detector technology that allows detection at ultra-low radiation levels. Artis Q.zen imaging can use doses as low as half the usual levels normally applied in angiography. This improvement is the result of several innovations, including a fundamental change in detector technology. Until now, almost all detectors have been based on amorphous silicon. The new crystalline silicon structure of the Artis Q.zen detector is more homogenous, allowing for more effective amplification of the signal, greatly reducing the electronic noise even at ultra-low doses.

The Artis Q.zen was developed to support better imaging quality at ultra-low-dose ranges, reducing the radiation exposure of patients, physicians, and medical staff. This is especially important in dose-sensitive application fields such as pediatric cardiology and radiology, or electrophysiology, which is being used on more and more patients as rates of cardiac arrhythmia increase in an aging population.

Innovative applications for interventional imaging

In addition to the hardware innovations are several software applications that improve interventional imaging. In coronary artery disease treatment, the applications allow precise correlation of angiography images with ultrasound images taken by a probe inside the coronary arteries. Stents are imaged in real-time during therapy, with motion stabilization created by simultaneous correction for the heartbeat.

Other new 3D applications can image the smallest structures inside the head. Their high spatial resolution is crucial for imaging intracranial stents or other miniscule structures, such as the cochlea in the inner ear. Moving organs such as the lungs can be imaged in 3D in less than 3 seconds, reducing the number of motion artifacts and the amount of contrast agent required. Through visualization and measurement of blood volumes in the liver or other organs, Siemens' functional 3D imaging provides a basis for planning therapies such as chemo-embolization of hepatic tumors.

Launched in November 2011 by the Siemens Healthcare Sector, "Agenda 2013" is a two-year global initiative to further strengthen the Healthcare Sector's innovative power and competitiveness. Specific measures will be implemented in four fields of action: Innovation, Competitiveness, Regional Footprint, and People Development.

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2012 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 1.8 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products/features (here mentioned) are not commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed. Please contact your local Siemens organization for further details.

Reference Number: HIM201211007e

Contact
Mr. Ulrich Künzel
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-3473
ulrich.kuenzel@siemens.com

Ulrich Künzel | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>