Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safely fixed hip prostheses

27.01.2009
Artificial hip joints are firmly anchored to the patient’s damaged bone by screws. But which parts of the bone will safely hold the screws in place? A simulation model is to calculate the strength of the bone from computer tomography images.

Hip prostheses do not hold forever. If an implant comes loose, the doctors have to replace it. Most patients need this second operation after about 15 years. By then, the first prosthesis has often worn down the pelvic bone in several places.

Moreover, the bone density, and thus also its strength, changes with increasing age. Medics therefore have to work out where best to place the screws that connect the artificial joint to the bone, and what shape the hip prosthesis needs to be in order to fit the surrounding bones as well as possible.

At present, doctors examine patients using computer tomography (CT), and determine the rough density of the bones from the images. On the basis of various assumptions, they then calculate how strong the bones are in different places. The problem is that, although there are various theories on which the simulations can be based, the results often deviate significantly from reality. The consistency of the damaged bones is usually different from what the simulation leads to believe.

This is set to be changed by researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Dresden and their colleagues at the biomechanics laboratory of the University of Leipzig. They are developing a model with which doctors can reliably and realistically calculate the density and elasticity of the bone from the CT scanner images. To this end, the researchers are transferring methods usually used for component testing to human hip bones, which involve inducing oscillations in the bone. This type of examination cannot be carried out on the patient. The bone has to be clamped into an apparatus. “The nature of the oscillations enables us to deduce local properties of the bone – such as its density and elasticity,” explains IWU group manager Martin Quickert.

The researchers compare these results with scanned images of the bone and describe the correlations on the basis of a mathematical model. This should make it possible in future to determine the strength of a bone directly from the CT scanner images. The scientists have already performed the first examinations on prepared and thus preserved bones, and plan to induce oscillations in unprepared bones left in their natural state over the coming months. The researchers hope that in about two years’ time, doctors will be able to obtain a realistic simulation model of unprecedented quality from computer tomography data. The prostheses can then be perfectly anchored, and will be held safely in place for longer.

Martin Quickert | alfa
Further information:
http://www.fraunhofer.de/EN/bigimg/2009/rn01fo6g.jsp
http://www.fraunhofer.de/EN/press/pi/2009/01/ResearchNews012009Topic6.jsp

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>