Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safely fixed hip prostheses

27.01.2009
Artificial hip joints are firmly anchored to the patient’s damaged bone by screws. But which parts of the bone will safely hold the screws in place? A simulation model is to calculate the strength of the bone from computer tomography images.

Hip prostheses do not hold forever. If an implant comes loose, the doctors have to replace it. Most patients need this second operation after about 15 years. By then, the first prosthesis has often worn down the pelvic bone in several places.

Moreover, the bone density, and thus also its strength, changes with increasing age. Medics therefore have to work out where best to place the screws that connect the artificial joint to the bone, and what shape the hip prosthesis needs to be in order to fit the surrounding bones as well as possible.

At present, doctors examine patients using computer tomography (CT), and determine the rough density of the bones from the images. On the basis of various assumptions, they then calculate how strong the bones are in different places. The problem is that, although there are various theories on which the simulations can be based, the results often deviate significantly from reality. The consistency of the damaged bones is usually different from what the simulation leads to believe.

This is set to be changed by researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Dresden and their colleagues at the biomechanics laboratory of the University of Leipzig. They are developing a model with which doctors can reliably and realistically calculate the density and elasticity of the bone from the CT scanner images. To this end, the researchers are transferring methods usually used for component testing to human hip bones, which involve inducing oscillations in the bone. This type of examination cannot be carried out on the patient. The bone has to be clamped into an apparatus. “The nature of the oscillations enables us to deduce local properties of the bone – such as its density and elasticity,” explains IWU group manager Martin Quickert.

The researchers compare these results with scanned images of the bone and describe the correlations on the basis of a mathematical model. This should make it possible in future to determine the strength of a bone directly from the CT scanner images. The scientists have already performed the first examinations on prepared and thus preserved bones, and plan to induce oscillations in unprepared bones left in their natural state over the coming months. The researchers hope that in about two years’ time, doctors will be able to obtain a realistic simulation model of unprecedented quality from computer tomography data. The prostheses can then be perfectly anchored, and will be held safely in place for longer.

Martin Quickert | alfa
Further information:
http://www.fraunhofer.de/EN/bigimg/2009/rn01fo6g.jsp
http://www.fraunhofer.de/EN/press/pi/2009/01/ResearchNews012009Topic6.jsp

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>