Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots preclude neck incision for thyroid surgery

07.07.2010
Robots that revolutionized gynecologic and urologic surgery in the past decade now offer the option of removing at least a portion of their diseased thyroid gland without the hallmark neck incision, researchers said.

The thyroid, which sits just under the Adam's apple and controls the body's metabolic rate, is about the size of a kiwi. Benign and cancerous disease can more than double its size. Dr. David Terris, Porubsky professor and chairman of the Medical College of Georgia Department of Otolaryngology-Head and Neck Surgery, has helped shepherd in minimally-invasive approaches that reduced neck incisions from several inches to less than an inch within the last few years.

The daVinci Surgical System, in which surgeons sitting at a console maneuver through tight spaces and around corners, enables access to the thyroid through the armpit, Terris said.

"In my opinion, if you are committed to not having a neck scar, this is the best way to do it," Terris said of patients who are trim, have benign disease and need only half of their two-lobed thyroid gland removed.

He and his colleagues – Dr. F. Christopher Holsinger, associate professor at the University of Texas MD Anderson Cancer Center, and Dr. Ronald B. Kuppersmith, clinical faculty member at Texas A & M Health Science Center – provide an overview of the robotic technique they are helping develop in the United States in the current print edition of Otolaryngologic Clinics of North America.

Although the armpit is farther from the gland than the neck is, simply raising the patient's arm during surgery shortens the path, leaving a fairly straightforward approach made navigable by the three- dimensional visualization and wrist-like maneuverability of the robot.

"The robot is what makes it possible to easily – and safely – do the work from that distance," Terris said. Surgeons gain access through a two-to-three-inch armpit incision, then work their way through skin and fat and finally in between two big neck muscles. "It's a long way down a big tunnel to get to that thyroid through the armpit that would not be possible without telescopes and long instruments," he said.

In the August 2004 edition of Laryngoscope Terris advocated the technique for select patients after comparing five minimally invasive approaches in pigs. While acknowledging that the armpit approach is a lot more work in humans, experience has enabled Terris to complete the procedure in less than two hours vs. under an hour via a three-quarter-inch neck incision.

Korean surgeons have the most experience to date with robotic thyroidectomy in humans and are using the approach to remove both lobes, Terris said, noting that cultural concerns about neck scars helped push Koreans to be pioneers in the field. He thinks improving technology will hasten the procedure's acceptance in the United States, where robotics in other medical procedures are already common.

In the journal article, the thyroid surgeons recommend that colleagues interested in the approach should complete robotics training, practice thyroid removal on cadavers, watch an experienced surgeon use the technique, then have a surgeon watch them.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>