Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic operation for heart valve reconstruction holds promise

27.01.2014
Operation holds promise for patients with infective endocarditis

A potentially fatal bacterial disease of the heart, infective endocarditis frequently affects the heart's tricuspid valve, often resulting in permanent tissue damage.

But a reconstructive technique, in which the valve is repaired with a bioscaffold on which new tissue can grow, can give some patients a new lease on life—a lease that has been extended to patients at Temple University Hospital, in Philadelphia, thanks to the pioneering work of T. Sloane Guy, MD, MBA, Associate Professor of Surgery, Section Chief of Cardiovascular Surgery, and Chief of Robotics at Temple University School of Medicine (TUSM).

Dr. Guy is one of only about a dozen cardiovascular surgeons in the United States who has performed complete tricuspid valve repair procedures using CorMatrix®, an extracellular matrix (ECM) material. In 2013, he became one of the first to perform the reconstruction endoscopically using robotic techniques. He delivered a video presentation of the pioneering procedure on January 27th at the 50th annual meeting of the Society of Thoracic Surgeons (STS), held in Orlando, Florida.

Robotic surgery is a groundbreaking tool in medicine that has been both celebrated for its benefits and criticized for its high cost and high-profile failures. But according to Dr. Guy, totally endoscopic robotic heart surgery not only minimizes the size of incisions made in the chest but also takes advantage of the ability of surgeons, using robotic-assisted tools and techniques, to make high-precision, minute movements, which gives it an edge over traditional techniques.

Recently, Dr. Guy performed a robotic repair by first removing nearly all of the damaged valve from the patient's heart. He then used what he calls the 'cylinder technique' to repair the damaged tissue with a sheet of bioscaffolding that had been fashioned into a tube. The tube effectively served as a new valve.

"We used a CorMatrix® bioscaffold to completely reconstruct the valve," Dr. Guy explained. CorMatrix® bioscaffolds consist of a sheet of ECM, an acellular meshwork of fibers and carbohydrate polymers that facilitates reconstruction by giving patients' own cells a framework on which to build new tissue. Because ECM is made of natural materials, it is eventually replaced by the patient's own cells and absorbed by the body. It also has a low likelihood of rejection, since it does not contain foreign cells or proteins that could precipitate an immune response.

"Temple Cardiovascular Surgery has had a big presence at the meeting this year," Dr. Guy said.

Coauthors on the abstract included Abul Kashem, MD, Akira Shiose, MD, Thomas Kelley, James McCarthy, Richard J. Kang, Larry Kaiser, MD, and Yoshiya Toyoda, MD, from the Division of Cardiovascular Surgery at TUSM and Sheela Pai, MD, and Yanfu Shao, MD, from the Department of Anesthesiology at TUSM.

About Temple Health

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System and by Temple University School of Medicine.

Temple University Health System (TUHS) is a $1.4 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the "Best Hospitals" in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with Temple University School of Medicine.

Temple University School of Medicine (TUSM), established in 1901, is one of the nation's leading medical schools. Each year, the School of Medicine educates approximately 840 medical students and 140 graduate students. Based on its level of funding from the National Institutes of Health, Temple University School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, TUSM is among the top 10 most applied-to medical schools in the nation.

Jeremy Walter | EurekAlert!
Further information:
http://www.tuhs.temple.edu

More articles from Medical Engineering:

nachricht New investigation of endovenous laser ablation of varicose veins
11.05.2016 | Kazan Federal University

nachricht A laser for your eyes
18.04.2016 | Lomonosov Moscow State University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>