Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolution with a salad spinner

04.05.2010
Rice students' 'Sally Centrifuge' could help diagnose anemia globally

A simple salad spinner will save lives this summer, if everything goes as planned by two Rice University undergraduates.

The spinner has been turned, so to speak, into a rudimentary centrifuge that medical clinics in developing countries can use to separate blood without electricity.

Rice sophomore Lila Kerr and freshman Lauren Theis will take their Sally Centrifuge abroad for nearly two months this summer as part of Beyond Traditional Borders (BTB), Rice's global health initiative that brings new ideas and technologies to underdeveloped countries. Kerr will take a spinner to Ecuador in late May, Theis will take one to Swaziland in early June and a third BTB team will take one to Malawi, also in June. Such field testing is important to Rice students as they develop a range of tools to enhance global health.

Kerr and Theis are minoring in global health technologies and took the Introduction to Bioengineering and World Health class taught by Rebecca Richards-Kortum, Rice's Stanley C. Moore Professor, chair of the Department of Bioengineering and director of Rice 360¢ª: Institute for Global Health Technologies.

"There was a whole range of projects to take on this year, and luckily we got one that wasn't terribly engineering-intensive," said Kerr, a sociology major from Dayton, Ohio.

"We were essentially told we need to find a way to diagnose anemia without power, without it being very costly and with a portable device," added Theis, a political science major and native of San Antonio, Texas.

They found that a salad spinner met those criteria. When tiny capillary tubes that contain about 15 microliters of blood are spun in the device for 10 minutes, the blood separates into heavier red blood cells and lighter plasma. The hematocrit, or ratio of red blood cells to the total volume, measured with a gauge held up to the tube, can tell clinicians if a patient is anemic. That detail is critical for diagnosing malnutrition, tuberculosis, HIV/AIDS and malaria.

"The students really did an amazing job of taking very simple, low-cost materials and creating a device their research shows correlates nicely with hematocrit levels in the blood," said Maria Oden, professor in the practice of engineering education and director of Rice's Oshman Engineering Design Kitchen (OEDK). She was the team's co-adviser with Richards-Kortum. "Many of the patients seen in developing world clinics are anemic, and it's a severe health problem. Being able to diagnose it with no power, with a device that's extremely lightweight, is very valuable," she said.

Kerr said the device spins tubes at up to 950 rpm. Results with the push-pump spinner compare favorably to those obtained with the ZIPocrit, a miniature, battery-powered centrifuge used as part of Rice's Lab-in-a-Backpack project. The ZIPocrit spins up to 10,000 rpm and completes its task in four to five minutes.

But the manual Sally Centrifuge, named in honor of a landmark known as the Sallyport on the Rice campus, has other advantages.

First, it requires no electricity -- just a bit of muscle. "We've pumped it for 20 minutes with no problem," Theis said. "Ten minutes is a breeze."

Second, it can spin up to 30 tubes at a time versus the ZIPocrit's maximum of four.

Third, it has proven to be fairly robust. "It's all plastic and pretty durable," Kerr said. "We haven't brought it overseas yet, of course, but we've trekked it back and forth across campus in our backpacks and grocery bags and it's held up fine."

The centrifuge, assembled using plastic lids, cut-up combs, yogurt containers and a hot-glue gun, costs about $30 in parts, including the spinner. The students expect to continue work on the device after their summer treks.

Contact: David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>