Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolution with a salad spinner

04.05.2010
Rice students' 'Sally Centrifuge' could help diagnose anemia globally

A simple salad spinner will save lives this summer, if everything goes as planned by two Rice University undergraduates.

The spinner has been turned, so to speak, into a rudimentary centrifuge that medical clinics in developing countries can use to separate blood without electricity.

Rice sophomore Lila Kerr and freshman Lauren Theis will take their Sally Centrifuge abroad for nearly two months this summer as part of Beyond Traditional Borders (BTB), Rice's global health initiative that brings new ideas and technologies to underdeveloped countries. Kerr will take a spinner to Ecuador in late May, Theis will take one to Swaziland in early June and a third BTB team will take one to Malawi, also in June. Such field testing is important to Rice students as they develop a range of tools to enhance global health.

Kerr and Theis are minoring in global health technologies and took the Introduction to Bioengineering and World Health class taught by Rebecca Richards-Kortum, Rice's Stanley C. Moore Professor, chair of the Department of Bioengineering and director of Rice 360¢ª: Institute for Global Health Technologies.

"There was a whole range of projects to take on this year, and luckily we got one that wasn't terribly engineering-intensive," said Kerr, a sociology major from Dayton, Ohio.

"We were essentially told we need to find a way to diagnose anemia without power, without it being very costly and with a portable device," added Theis, a political science major and native of San Antonio, Texas.

They found that a salad spinner met those criteria. When tiny capillary tubes that contain about 15 microliters of blood are spun in the device for 10 minutes, the blood separates into heavier red blood cells and lighter plasma. The hematocrit, or ratio of red blood cells to the total volume, measured with a gauge held up to the tube, can tell clinicians if a patient is anemic. That detail is critical for diagnosing malnutrition, tuberculosis, HIV/AIDS and malaria.

"The students really did an amazing job of taking very simple, low-cost materials and creating a device their research shows correlates nicely with hematocrit levels in the blood," said Maria Oden, professor in the practice of engineering education and director of Rice's Oshman Engineering Design Kitchen (OEDK). She was the team's co-adviser with Richards-Kortum. "Many of the patients seen in developing world clinics are anemic, and it's a severe health problem. Being able to diagnose it with no power, with a device that's extremely lightweight, is very valuable," she said.

Kerr said the device spins tubes at up to 950 rpm. Results with the push-pump spinner compare favorably to those obtained with the ZIPocrit, a miniature, battery-powered centrifuge used as part of Rice's Lab-in-a-Backpack project. The ZIPocrit spins up to 10,000 rpm and completes its task in four to five minutes.

But the manual Sally Centrifuge, named in honor of a landmark known as the Sallyport on the Rice campus, has other advantages.

First, it requires no electricity -- just a bit of muscle. "We've pumped it for 20 minutes with no problem," Theis said. "Ten minutes is a breeze."

Second, it can spin up to 30 tubes at a time versus the ZIPocrit's maximum of four.

Third, it has proven to be fairly robust. "It's all plastic and pretty durable," Kerr said. "We haven't brought it overseas yet, of course, but we've trekked it back and forth across campus in our backpacks and grocery bags and it's held up fine."

The centrifuge, assembled using plastic lids, cut-up combs, yogurt containers and a hot-glue gun, costs about $30 in parts, including the spinner. The students expect to continue work on the device after their summer treks.

Contact: David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Medical Engineering:

nachricht Novel chip-based gene expression tool analyzes RNA quickly and accurately
18.01.2018 | University of Illinois College of Engineering

nachricht Potentially life-saving health monitor technology designed by Sussex University physicists
10.01.2018 | University of Sussex

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>