Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound for open leg ulcers

05.12.2007
For skin transplants to “take root”, it needs to be ensured that the patient’s tissue is properly irrigated with blood. Low-frequency ultrasound can promote this effect. Researchers have developed the first device that permits variable control of the ultrasound frequency.

Minor skin wounds might hurt a lot, but they usually heal within a matter of days. For diabetics, the slightest scratch can have more serious consequences. In many cases the wound takes a long time to heal and spreads to the entire lower leg: Specialists refer to this as an “open leg ulcer”. The main reason is poor circulation, which causes insufficient oxygen and other nutrients to be transported to the wound.

In many cases, the only solution is a skin transplant of healthy tissue. To ensure that the transplant is accepted, the surgeon has to clean the wound and artificially stimulate the blood flow in the surrounding tissue – often using low-frequency ultrasound. Unlike the ultrasound used in prenatal examinations, which operates at frequencies of several hundred kilohertz, the frequencies used here are measured in tens of kilohertz. Devices operating at fixed frequencies are already available. But what effect does the treatment have on the patient’s circulation? The only empirical data that exists at present is based on patient surveys.

Researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Dresden teamed up with colleagues from IMM Ingenieurbüro Mittweida and Smart Material GmbH Dresden to carry out a systematic study of this method. How often, for how long, and at what frequencies do wounds have to be treated to prepare them optimally for transplantation?

“We have developed a device that permits the frequency of the ultrasound waves to be varied between 20 and 120 kilohertz, and also has an output regulator,” says IWU team leader Dr. Gunther Naumann. “To stimulate the blood flow in the deeper epidermal layers, we need a lower frequency than that required to clean the wound in the subcutaneous zone.”

Another unique feature of the new ultrasound device is that it is equipped with a measuring system that directs light into the wound using special probes. The red region of the color spectrum of the reflected light indicates the concentration of oxygen in the blood – which in turn reveals how efficiently the tissue is being irrigated.

“Our observations have shown that the oxygen concentration continues to rise for 30 minutes after treatment. But we need to conduct further investigations to determine whether a sustained higher level can be reached after repeated treatment,” Naumann reports.

A prototype of the new device has been installed for use in clinical trials in the Department of Dermatology and Allergology at the academic teaching hospital in Dresden-Friedrichstadt. Ten patients have been treated so far. The study is to be continued in 2008.

Press Office | alfa
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/EN/bigimg/2007/md12fo3g.jsp
http://www.fraunhofer.de/EN/bigimg/2007/md12fo3g2.jsp

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>