Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound for open leg ulcers

05.12.2007
For skin transplants to “take root”, it needs to be ensured that the patient’s tissue is properly irrigated with blood. Low-frequency ultrasound can promote this effect. Researchers have developed the first device that permits variable control of the ultrasound frequency.

Minor skin wounds might hurt a lot, but they usually heal within a matter of days. For diabetics, the slightest scratch can have more serious consequences. In many cases the wound takes a long time to heal and spreads to the entire lower leg: Specialists refer to this as an “open leg ulcer”. The main reason is poor circulation, which causes insufficient oxygen and other nutrients to be transported to the wound.

In many cases, the only solution is a skin transplant of healthy tissue. To ensure that the transplant is accepted, the surgeon has to clean the wound and artificially stimulate the blood flow in the surrounding tissue – often using low-frequency ultrasound. Unlike the ultrasound used in prenatal examinations, which operates at frequencies of several hundred kilohertz, the frequencies used here are measured in tens of kilohertz. Devices operating at fixed frequencies are already available. But what effect does the treatment have on the patient’s circulation? The only empirical data that exists at present is based on patient surveys.

Researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Dresden teamed up with colleagues from IMM Ingenieurbüro Mittweida and Smart Material GmbH Dresden to carry out a systematic study of this method. How often, for how long, and at what frequencies do wounds have to be treated to prepare them optimally for transplantation?

“We have developed a device that permits the frequency of the ultrasound waves to be varied between 20 and 120 kilohertz, and also has an output regulator,” says IWU team leader Dr. Gunther Naumann. “To stimulate the blood flow in the deeper epidermal layers, we need a lower frequency than that required to clean the wound in the subcutaneous zone.”

Another unique feature of the new ultrasound device is that it is equipped with a measuring system that directs light into the wound using special probes. The red region of the color spectrum of the reflected light indicates the concentration of oxygen in the blood – which in turn reveals how efficiently the tissue is being irrigated.

“Our observations have shown that the oxygen concentration continues to rise for 30 minutes after treatment. But we need to conduct further investigations to determine whether a sustained higher level can be reached after repeated treatment,” Naumann reports.

A prototype of the new device has been installed for use in clinical trials in the Department of Dermatology and Allergology at the academic teaching hospital in Dresden-Friedrichstadt. Ten patients have been treated so far. The study is to be continued in 2008.

Press Office | alfa
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/EN/bigimg/2007/md12fo3g.jsp
http://www.fraunhofer.de/EN/bigimg/2007/md12fo3g2.jsp

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>