Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound for open leg ulcers

05.12.2007
For skin transplants to “take root”, it needs to be ensured that the patient’s tissue is properly irrigated with blood. Low-frequency ultrasound can promote this effect. Researchers have developed the first device that permits variable control of the ultrasound frequency.

Minor skin wounds might hurt a lot, but they usually heal within a matter of days. For diabetics, the slightest scratch can have more serious consequences. In many cases the wound takes a long time to heal and spreads to the entire lower leg: Specialists refer to this as an “open leg ulcer”. The main reason is poor circulation, which causes insufficient oxygen and other nutrients to be transported to the wound.

In many cases, the only solution is a skin transplant of healthy tissue. To ensure that the transplant is accepted, the surgeon has to clean the wound and artificially stimulate the blood flow in the surrounding tissue – often using low-frequency ultrasound. Unlike the ultrasound used in prenatal examinations, which operates at frequencies of several hundred kilohertz, the frequencies used here are measured in tens of kilohertz. Devices operating at fixed frequencies are already available. But what effect does the treatment have on the patient’s circulation? The only empirical data that exists at present is based on patient surveys.

Researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Dresden teamed up with colleagues from IMM Ingenieurbüro Mittweida and Smart Material GmbH Dresden to carry out a systematic study of this method. How often, for how long, and at what frequencies do wounds have to be treated to prepare them optimally for transplantation?

“We have developed a device that permits the frequency of the ultrasound waves to be varied between 20 and 120 kilohertz, and also has an output regulator,” says IWU team leader Dr. Gunther Naumann. “To stimulate the blood flow in the deeper epidermal layers, we need a lower frequency than that required to clean the wound in the subcutaneous zone.”

Another unique feature of the new ultrasound device is that it is equipped with a measuring system that directs light into the wound using special probes. The red region of the color spectrum of the reflected light indicates the concentration of oxygen in the blood – which in turn reveals how efficiently the tissue is being irrigated.

“Our observations have shown that the oxygen concentration continues to rise for 30 minutes after treatment. But we need to conduct further investigations to determine whether a sustained higher level can be reached after repeated treatment,” Naumann reports.

A prototype of the new device has been installed for use in clinical trials in the Department of Dermatology and Allergology at the academic teaching hospital in Dresden-Friedrichstadt. Ten patients have been treated so far. The study is to be continued in 2008.

Press Office | alfa
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/EN/bigimg/2007/md12fo3g.jsp
http://www.fraunhofer.de/EN/bigimg/2007/md12fo3g2.jsp

More articles from Medical Engineering:

nachricht Novel chip-based gene expression tool analyzes RNA quickly and accurately
18.01.2018 | University of Illinois College of Engineering

nachricht Potentially life-saving health monitor technology designed by Sussex University physicists
10.01.2018 | University of Sussex

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>