Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique ensures rapid profiling of autoantibodies in rheumatoid arthritis

26.10.2007
Using a new imaging technique, a fast and accurate profile of autoantibodies present in the blood serum of rheumatic patients can be made.

This profile can give valuable information about the progress of the disease. A unique feature of this so-called Surface Plasmon Resonance (SPR) technique is that it directly tests on blood serum, without complex preprocessing. A special chip will enable many parallel tests. Scientists from the University of Twente and the Radboud University Nijmegen, both in The Netherlands, will publish about the new imaging technique in the Journal of the American Chemical Society (JACS).

The scientists have run tests on the serum of 50 RA patients as well as a control group of 29 persons. Direct testing on blood serum is unique: in other techniques fluorescent labels and preprocessing is necessary to visualize the relevant proteins. The diluted serum is led over a special gold coated microchip containing a large number of spots with a specific peptide coating. Whenever these peptides interact with autoantibodies present in the serum, this process can be monitored by Surface Plasmon Resonance Imaging (SPR). Using laser light, all gold spots are scanned: the reflection of light of the spots changes whenever there is a molecular interaction on the spot. At a certain angle of light, there is no reflection at all: this is the so-called SPR dip undergoing a shift caused by the interaction. The technique goes beyond proving that autoantibodies are present: the interaction between the protein and the antibody can be monitored real-time and without any labels.

Autoantibodies are manufactured by the immune system as a reaction on the so-called citrullinated proteins playing a role in rheumatoid arthritis. On a single chip, several types of peptides can be placed, for rapid parallel screening. The next step is to investigate in what way the patient profiles help to monitor the progress of the disease. This could lead to more personalized treatment in the future. The applications are not limited to monitoring rheuma or other autoimmune diseases: SPR imaging can be used for monitoring a wide range of biomolecular interactions.

The research was led by dr. Richard Schasfoort of the BIOS Lab-on-a-chip group, part of the MESA+ Institute for Nanotechnology of the University of Twente. He has closely cooperated with the Biomolecular Chemistry group of the Radboud University Nijmegen, of Professor Ger Pruijn. The research has been financed by the Dutch Technology Foundation (STW) within a project called ‘Proteomics on a chip for monitoring autoimmune diseases’.

Wiebe van der Veen | alfa
Further information:
http://pubs.acs.org/journals/jacsat/index.html

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>