Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology to help stroke patients re-learn movement to be trialled at Southampton

19.09.2007
A pioneering system which aims to retrain weak or paralysed muscles in patients who have suffered brain damage as a result of a stroke is being trialled at the University of Southampton. Local people are needed to participate in trials so that this technology can be made widely available.

Researchers from the University’s School of Health Professions & Rehabilitation Sciences and the School of Electronics & Computer Science (ECS). have developed a technology to help stroke patients to re-learn movement.

Dr Jane Burridge from the School of Health Professions & Rehabilitation Sciences who is leading the research commented: ‘As far as we know, nobody has tried using a technique called iterative learning control, to help people who have had a stroke to move again. It is a great example of how state of the art control theory, normally used for industrial robots, can be applied to challenges in rehabilitation.’

Now, 18 months into the three year project, the researchers have tested the technology on healthy people and proved that it works and now want to carry out trials with local people who have suffered strokes.

Working with stroke patients, the team will look at how electrical stimulation to contract appropriate muscles through electrodes attached to the skin can be controlled to enable stroke patients to successfully perform tasks. The patient will attempt to track a moving target over a two dimensional plane by moving a joy-stick.

The patient’s movement will be measured to detect the tracking error and calculations made to adjust the level and timing of stimulation so that the error is corrected. The ultimate aim is that through repetition, voluntary movement will improve, thus gradually reducing the need for artificial stimulation.

Dr Paul Lewin at ECS commented: ‘This is a very challenging project as it is the first time in Europe that this technology has been applied to humans. With robots, behaviour is entirely predictable, you can make them perform a task perfectly every time. People often reach a natural plateau in their performance, but if you can get them to repeat moves using certain tasks, they have a much better chance of recovery.’

Dr Burridge added: ‘This is a very exciting development of what could prove to be a user friendly way of enabling recovery of movement in patients who are severely disabled.

Local people who live near to Southampton who are interested in knowing more about the study or participating in the trials should contact: Dr Jane Burridge, Email: sjh2jo6@soton.ac.uk, Tel: 023 8059 8927.

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>