Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Virtual autopsy' helps identify drowning as cause of death

30.05.2007
"Virtual autopsy" performed with multidetector computed tomography (MDCT) can aid forensics teams in determining if a person has drowned, according to a study published in the June issue of Radiology.

MDCT is comparable to conventional autopsy in demonstrating airway froth and sediment that are indicative of drowning.

"Our findings show that MDCT can be used either to facilitate or reduce the need for conventional autopsy when drowning is the suspected cause of death," said lead author Angela D. Levy, M.D., from the Department of Radiology, Uniformed Services University of the Health Sciences in Bethesda, Md.

The determination of drowning as a cause of death for a body that is found in water is imperative in forensic investigation because becoming submerged in water may be a secondary rather than primary event. Autopsy findings that support the diagnosis of drowning include but are not limited to frothy fluid in the airways or lungs, hyperinflated and congested lungs, and fluid in the paranasal sinuses or stomach.

There are some advantages to virtual autopsy compared to conventional autopsy. In cases of suspicious death, the procedure does not damage or destroy key forensic evidence, as can happen during a conventional autopsy. In addition, MDCT can be used in situations where autopsy may not be feasible or is prohibited by religious beliefs. However, in most cases, MDCT would best be employed as an adjunct to routine autopsy.

Dr. Levy and colleagues performed total-body MDCT exams on 28 consecutive male drowning victims and a control group of 12 men who were victims of sudden death from coronary artery disease. Following MDCT, routine autopsies were performed.

MDCT images were evaluated for the presence of fluid and sediment in the paranasal sinuses and airways, fluid in the ear, frothy fluid in the airways, obscured "ground-glass" appearance or thickening in the lungs, and swelling, fluid or sediment in the stomach. Images were then compared to autopsy reports and photographs.

MDCT indicated that all of the drowning victims had fluid in the paranasal sinuses and ears and ground-glass opacity in the lungs. Twenty-six (93 percent) had fluid in the subglottic (below the vocal cords) trachea and main bronchi. Fourteen (50 percent) had sediment in the subglottic airways. Six (21 percent) had frothy fluid in the airways, and 25 (89 percent) had ground-glass opacity and thickening in the lungs. Twenty-five (89 percent) exhibited swelling of the stomach.

No members of the control group had frothy fluid or sediment in the airways or sinuses, 11 (92 percent) had subglottic airway, tracheal and bronchial fluid. All members of the control group exhibited collapsed stomachs.

Autopsy results in these categories were similar to MDCT results for both study groups.

"Airway froth and sediment can be demonstrated on MDCT and were specific to drowning, thereby replicating the findings seen at autopsy," said Dr. Levy.

Based on this study, MDCT may provide support for the diagnosis of drowning when other causes of death have been excluded by a limited autopsy or external examination of the body. In addition, MDCT virtual autopsy may be useful as a pre-autopsy triage tool in mass casualty scenarios.

"More and more, advanced imaging tools such as MDCT are being applied to forensic investigations," Dr. Levy said. "In the future, imaging in forensics may be just as important as imaging in clinical medicine."

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>