Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Virtual autopsy' helps identify drowning as cause of death

30.05.2007
"Virtual autopsy" performed with multidetector computed tomography (MDCT) can aid forensics teams in determining if a person has drowned, according to a study published in the June issue of Radiology.

MDCT is comparable to conventional autopsy in demonstrating airway froth and sediment that are indicative of drowning.

"Our findings show that MDCT can be used either to facilitate or reduce the need for conventional autopsy when drowning is the suspected cause of death," said lead author Angela D. Levy, M.D., from the Department of Radiology, Uniformed Services University of the Health Sciences in Bethesda, Md.

The determination of drowning as a cause of death for a body that is found in water is imperative in forensic investigation because becoming submerged in water may be a secondary rather than primary event. Autopsy findings that support the diagnosis of drowning include but are not limited to frothy fluid in the airways or lungs, hyperinflated and congested lungs, and fluid in the paranasal sinuses or stomach.

There are some advantages to virtual autopsy compared to conventional autopsy. In cases of suspicious death, the procedure does not damage or destroy key forensic evidence, as can happen during a conventional autopsy. In addition, MDCT can be used in situations where autopsy may not be feasible or is prohibited by religious beliefs. However, in most cases, MDCT would best be employed as an adjunct to routine autopsy.

Dr. Levy and colleagues performed total-body MDCT exams on 28 consecutive male drowning victims and a control group of 12 men who were victims of sudden death from coronary artery disease. Following MDCT, routine autopsies were performed.

MDCT images were evaluated for the presence of fluid and sediment in the paranasal sinuses and airways, fluid in the ear, frothy fluid in the airways, obscured "ground-glass" appearance or thickening in the lungs, and swelling, fluid or sediment in the stomach. Images were then compared to autopsy reports and photographs.

MDCT indicated that all of the drowning victims had fluid in the paranasal sinuses and ears and ground-glass opacity in the lungs. Twenty-six (93 percent) had fluid in the subglottic (below the vocal cords) trachea and main bronchi. Fourteen (50 percent) had sediment in the subglottic airways. Six (21 percent) had frothy fluid in the airways, and 25 (89 percent) had ground-glass opacity and thickening in the lungs. Twenty-five (89 percent) exhibited swelling of the stomach.

No members of the control group had frothy fluid or sediment in the airways or sinuses, 11 (92 percent) had subglottic airway, tracheal and bronchial fluid. All members of the control group exhibited collapsed stomachs.

Autopsy results in these categories were similar to MDCT results for both study groups.

"Airway froth and sediment can be demonstrated on MDCT and were specific to drowning, thereby replicating the findings seen at autopsy," said Dr. Levy.

Based on this study, MDCT may provide support for the diagnosis of drowning when other causes of death have been excluded by a limited autopsy or external examination of the body. In addition, MDCT virtual autopsy may be useful as a pre-autopsy triage tool in mass casualty scenarios.

"More and more, advanced imaging tools such as MDCT are being applied to forensic investigations," Dr. Levy said. "In the future, imaging in forensics may be just as important as imaging in clinical medicine."

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>