Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Virtual autopsy' helps identify drowning as cause of death

30.05.2007
"Virtual autopsy" performed with multidetector computed tomography (MDCT) can aid forensics teams in determining if a person has drowned, according to a study published in the June issue of Radiology.

MDCT is comparable to conventional autopsy in demonstrating airway froth and sediment that are indicative of drowning.

"Our findings show that MDCT can be used either to facilitate or reduce the need for conventional autopsy when drowning is the suspected cause of death," said lead author Angela D. Levy, M.D., from the Department of Radiology, Uniformed Services University of the Health Sciences in Bethesda, Md.

The determination of drowning as a cause of death for a body that is found in water is imperative in forensic investigation because becoming submerged in water may be a secondary rather than primary event. Autopsy findings that support the diagnosis of drowning include but are not limited to frothy fluid in the airways or lungs, hyperinflated and congested lungs, and fluid in the paranasal sinuses or stomach.

There are some advantages to virtual autopsy compared to conventional autopsy. In cases of suspicious death, the procedure does not damage or destroy key forensic evidence, as can happen during a conventional autopsy. In addition, MDCT can be used in situations where autopsy may not be feasible or is prohibited by religious beliefs. However, in most cases, MDCT would best be employed as an adjunct to routine autopsy.

Dr. Levy and colleagues performed total-body MDCT exams on 28 consecutive male drowning victims and a control group of 12 men who were victims of sudden death from coronary artery disease. Following MDCT, routine autopsies were performed.

MDCT images were evaluated for the presence of fluid and sediment in the paranasal sinuses and airways, fluid in the ear, frothy fluid in the airways, obscured "ground-glass" appearance or thickening in the lungs, and swelling, fluid or sediment in the stomach. Images were then compared to autopsy reports and photographs.

MDCT indicated that all of the drowning victims had fluid in the paranasal sinuses and ears and ground-glass opacity in the lungs. Twenty-six (93 percent) had fluid in the subglottic (below the vocal cords) trachea and main bronchi. Fourteen (50 percent) had sediment in the subglottic airways. Six (21 percent) had frothy fluid in the airways, and 25 (89 percent) had ground-glass opacity and thickening in the lungs. Twenty-five (89 percent) exhibited swelling of the stomach.

No members of the control group had frothy fluid or sediment in the airways or sinuses, 11 (92 percent) had subglottic airway, tracheal and bronchial fluid. All members of the control group exhibited collapsed stomachs.

Autopsy results in these categories were similar to MDCT results for both study groups.

"Airway froth and sediment can be demonstrated on MDCT and were specific to drowning, thereby replicating the findings seen at autopsy," said Dr. Levy.

Based on this study, MDCT may provide support for the diagnosis of drowning when other causes of death have been excluded by a limited autopsy or external examination of the body. In addition, MDCT virtual autopsy may be useful as a pre-autopsy triage tool in mass casualty scenarios.

"More and more, advanced imaging tools such as MDCT are being applied to forensic investigations," Dr. Levy said. "In the future, imaging in forensics may be just as important as imaging in clinical medicine."

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>