Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel catheter technique successfully patches holes in the heart

14.05.2007
Patients avoid open-chest surgery, return to active lives

A novel catheter technique for patching holes in the heart may make it possible for many patients to avoid surgery altogether and others to regain enough strength to safely undergo surgical repair at a later date, according to a study reported at the 30th Annual Scientific Sessions of the Society for Cardiovascular Angiography and Interventions, May 9–12, 2007, in Orlando, FL.

The patch successfully closed ventricular septal defects (VSDs)—or ruptures in the wall between the right and left ventricles—in nearly all patients, allowing blood to circulate normally again and relieving fluid back-up in the lungs. After recovery, patients were able to return to active lives.

"Patients with acute VSDs may be critically ill with heart failure and perhaps be in cardiogenic shock," said Matthew W. Martinez, M.D., a cardiology fellow at the Mayo Clinic in Rochester, MN. "This procedure offers an alternative for patients who are too sick to undergo emergency heart surgery or simply don't want surgery."

To track the long-term effectiveness of the catheter procedure, Dr. Martinez and his colleagues reviewed the medical records of 10 patients treated with the VSD patch between 1995 and 2005. Of these, 5 patients experienced rupture of the ventricular wall, or septum, as a result of a heart attack. In the other 5 patients, the VSD was an unintended consequence of a previous heart surgery.

In all cases, the VSD allowed a portion of the blood in the left ventricle to shoot backward into the right ventricle with each heart beat, rather than being circulated to the rest of the body. As a result, patients were experiencing such severe heart failure they were short of breath at rest or with minimal activity, and were judged to have New York Heart Association class 3 and 4 heart failure.

A variety of patches were used in the study, but all were some form of AMPLATZER Occluder (AGA Medical Corp., Plymouth, MN). The VSD patch is composed of two discs connected by a thick shaft. The discs are made of flexible nitinol metal and covered in polyester fabric that encourages heart tissue to grow over the discs, completely covering them during healing.

Before implantation, the flexible double-disc patch is pulled into a catheter, collapsing and compressing it lengthwise. It is then threaded through a vein into the right ventricle and across the rupture into the left ventricle. The patch is pushed partially out of its catheter sheath until the first disc pops open. The catheter is then withdrawn back into the right ventricle, with the first disc positioned against the left ventricular wall and the connecting shaft filling the hole created by the rupture. From inside the right ventricle, the patch is pushed forward again, releasing the second disc, which covers the rupture on the right side of the heart.

Implantation of the VSD occluder was performed by Donald J. Hagler, M.D., FSCAI, a professor of pediatrics in the Divisions of Pediatric Cardiology and Cardiovascular Diseases at the Mayo Clinic. The procedure was successful in all patients, without complications. One patient died 5 days later of illness unrelated to the VSD patch. In 2 patients, the rupture didn't fully heal, causing damage to blood cells as they jetted through the narrow opening. A third patient developed a bacterial infection that started several months after device implantation. The patch was removed and all 3 patients had successful surgery to repair the rupture.

Even in such cases, the VSD patch serves its purpose by allowing patients to regain enough strength to withstand surgery, Dr. Martinez said. "Surgery is the long-term answer for some patients," he said. "In such cases, the VSD occluder successfully bridges the patients to surgery."

After a follow-up that averaged more than 1 year, patients were feeling markedly better and were much more active, even able to climb a flight of stairs before becoming short of breath. All patients were ranked in New York Heart Association class 2 or better.

Kathy Boyd David | EurekAlert!
Further information:
http://www.scai.org

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>