Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique is highly accurate in diagnosing, locating pancreas defects in newborns

31.01.2007
Noninvasive PET scans guide surgical care of dangerously high insulin levels

The noninvasive imaging technology called positron-emission tomography (PET scan) is extremely accurate in diagnosing a type of congenital hyperinsulinism (HI), a rare but severe imbalance of insulin levels in newborns. When that disease is confined to a limited section of the baby's pancreas, the PET scan is 100 percent accurate in locating the abnormal spot, and guiding surgeons to curative, organ-sparing surgery.

A research team from The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine reported highly encouraging preliminary results from a study of 24 infants referred to the Hyperinsulinism Center at Children's Hospital between December 2004 and November 2005. All the children had congenital hyperinsulinism that could not be controlled with medicine. If this condition goes uncontrolled, abnormally high insulin levels may cause irreversible brain damage. The study appeared in the February issue of the Journal of Pediatrics.

Congenital HI is caused by mutations that damage the insulin-secreting beta cells in the pancreas, which in an infant is smaller than an adult's little finger. When the abnormal cells are limited to a discrete portion of the pancreas, the disease is focal; when the abnormal cells are distributed throughout the organ, the disease is diffuse. Accurate diagnosis is important because focal disease can be cured by surgically removing the focal lesions. In diffuse disease, surgeons may remove nearly the total pancreas, but that leaves the child at risk for later diabetes.

Using a mildly radioactive compound called 18F-fluoro-L-dihydroxyphenylalanine, or [18F]-DOPA, the researchers diagnosed focal or diffuse hyperinsulinism correctly in 23 of the 24 cases, for an accuracy of 96 percent. In the 11 cases with focal hyperinsulinism, the technique was 100 percent accurate in pinpointing the abnormal lesions. [18F]-DOPA binds to the lesions, which then are visible to the naked eye on a body scanner.

"When we compared our findings from the PET scan with pathological results, we found 100 percent agreement in locating the focal lesions," said Olga T. Hardy, M.D., a pediatric endocrinologist at Children's Hospital who was the study's lead author. "This accuracy is superior to that of invasive, technically difficult techniques that measure insulin sampled from specific veins in an infant."

The Congenital Hyperinsulinism Center at The Children's Hospital of Philadelphia is the only facility of its kind in the country, and one of the few centers worldwide, with the knowledge and capability to successfully cure patients. Our specialists are true pioneers in the diagnosis and treatment of HI, offering patients the most innovative and compassionate care. The Center provides a multidisciplinary approach to care. Our sophisticated team of pediatric endocrinologists, surgeons, pathologists, anesthesiologists, nurses and researchers work closely together to provide seamless care on a full spectrum of services.

Joey Marie McCool | EurekAlert!
Further information:
http://www.chop.edu

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>