Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first 3 Teslas magnetic resonance imager for research

27.10.2006
The University Hospital at the University of Navarra and the Applied Medicine Research Centre (CIMA) of the University has recently acquired a 3 Teslas magnetic resonance imager for joint use, the first for research applications in Spain.

The 3 Teslas is the magnetic resonance imaging unit with the highest strength currently permitted by international medical bodies for the morphological study of the human body.

Enhanced precision

The University Hospital at the University of Navarra currently has two other magnetic resonance units. The first of these has a strength of 0.2 Teslas (unit of magnetic field) with a C-shape or “open” structure. Apart from this, the hospital also has a 1.5 Teslas unit of a cylindrical shape.

The fundamental difference between the resonance units is marked by the intensity of the main magnetic field. There currently exist imaging units that have strengths from 0.2 Teslas and others that are currently in an experimental phase and reach a strength of 7 Teslas.

The most notable advantage of the 3 Teslas unit is its high precision given that it enables the recording of an enhanced image quality in less exploration time. Moreover, the imaging unit will be used to continue lines of research in close collaboration with CIMA, the most important of which involve the study of Alzheimer’s Disease and Parkinson’s.

Specialist medical uses

At a health care level, the medical specialities to benefit most from the acquisition of this unit, and in which the use is the most novel, are neuro-radiology, imaging diagnosis in muscular-skeletal injuries and angiography by Magnetic Resonance. Besides, there exist other areas of the body the study of which will also be enhanced by the use of 3 Teslas resonance such as the abdomen, the breast and the heart, amongst others.

Likewise, the greater strength of the magnetic field enables the optimisation of highly specialised techniques such as, for example, diffusion (used, fundamentally, for the study of the brain), perfusion (blood circulation system) and functional magnetic resonance.

Molecular radiology

The 3 Teslas unit also provides new care possibilities as regards molecular radiology. The new concept of imaging procedures involves the use of substances that are deposited at a molecular level and the behaviour of which, observed using various techniques, enables us to make a diagnosis and to differentiate the various elements under study. For example, the early diagnostic search for a cancer prior to it reaching a certain size.

Side effects

Despite the overall innocuousness of the exploration and diagnostic technique, there are certain patients for which its use has side effects, basically those with pacemakers given that the magnetic fields render this heart apparatus inoperable. Any ferromagnetic metallic structures have to be carefully monitored before introducing a patient into a strong magnetic field, as the influence of the field may cause these metal structures to move or their temperature to rise.

Neuroimaging in Parkinson’s and Alzheimer

The acquisition of the 3 Teslas magnetic resonance imaging unit will enhance Functional Neuroimaging research – already initiated at the Applied Medicine Research Centre (CIMA) of the University.

A number of research projects into Parkinson’s disease focus on the role of the basal ganglia - altered with this condition - and the perception of tactile, auditory or visual stimuli. Within this line of research, one of the priority studies is related to the control of voluntary movement. For the patient with Parkinson’s, and using magnetic resonance, the areas of the brain that function while carrying out complex manual movements are identified and likewise how this cerebral activity is modified with learning. It is of interest to know the plasticity of these altered neuronal populations and how they react to and change with medication.

Another important line of research involves cognitive neurology, related to the onset of dementia. For example, in persons with memory or attention disorders, it can be determined if there exists incipient dementia or not. While undergoing resonance, the patient is given cognitive tasks of a simple nature and targeting a specific function, for example, attention, memory, orientation, discrimination, amongst others, with the aim of measuring the neuronal activity of the different parts of the patient’s brain while undertaking these cognitive tasks.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1067

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>