Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The first 3 Teslas magnetic resonance imager for research

The University Hospital at the University of Navarra and the Applied Medicine Research Centre (CIMA) of the University has recently acquired a 3 Teslas magnetic resonance imager for joint use, the first for research applications in Spain.

The 3 Teslas is the magnetic resonance imaging unit with the highest strength currently permitted by international medical bodies for the morphological study of the human body.

Enhanced precision

The University Hospital at the University of Navarra currently has two other magnetic resonance units. The first of these has a strength of 0.2 Teslas (unit of magnetic field) with a C-shape or “open” structure. Apart from this, the hospital also has a 1.5 Teslas unit of a cylindrical shape.

The fundamental difference between the resonance units is marked by the intensity of the main magnetic field. There currently exist imaging units that have strengths from 0.2 Teslas and others that are currently in an experimental phase and reach a strength of 7 Teslas.

The most notable advantage of the 3 Teslas unit is its high precision given that it enables the recording of an enhanced image quality in less exploration time. Moreover, the imaging unit will be used to continue lines of research in close collaboration with CIMA, the most important of which involve the study of Alzheimer’s Disease and Parkinson’s.

Specialist medical uses

At a health care level, the medical specialities to benefit most from the acquisition of this unit, and in which the use is the most novel, are neuro-radiology, imaging diagnosis in muscular-skeletal injuries and angiography by Magnetic Resonance. Besides, there exist other areas of the body the study of which will also be enhanced by the use of 3 Teslas resonance such as the abdomen, the breast and the heart, amongst others.

Likewise, the greater strength of the magnetic field enables the optimisation of highly specialised techniques such as, for example, diffusion (used, fundamentally, for the study of the brain), perfusion (blood circulation system) and functional magnetic resonance.

Molecular radiology

The 3 Teslas unit also provides new care possibilities as regards molecular radiology. The new concept of imaging procedures involves the use of substances that are deposited at a molecular level and the behaviour of which, observed using various techniques, enables us to make a diagnosis and to differentiate the various elements under study. For example, the early diagnostic search for a cancer prior to it reaching a certain size.

Side effects

Despite the overall innocuousness of the exploration and diagnostic technique, there are certain patients for which its use has side effects, basically those with pacemakers given that the magnetic fields render this heart apparatus inoperable. Any ferromagnetic metallic structures have to be carefully monitored before introducing a patient into a strong magnetic field, as the influence of the field may cause these metal structures to move or their temperature to rise.

Neuroimaging in Parkinson’s and Alzheimer

The acquisition of the 3 Teslas magnetic resonance imaging unit will enhance Functional Neuroimaging research – already initiated at the Applied Medicine Research Centre (CIMA) of the University.

A number of research projects into Parkinson’s disease focus on the role of the basal ganglia - altered with this condition - and the perception of tactile, auditory or visual stimuli. Within this line of research, one of the priority studies is related to the control of voluntary movement. For the patient with Parkinson’s, and using magnetic resonance, the areas of the brain that function while carrying out complex manual movements are identified and likewise how this cerebral activity is modified with learning. It is of interest to know the plasticity of these altered neuronal populations and how they react to and change with medication.

Another important line of research involves cognitive neurology, related to the onset of dementia. For example, in persons with memory or attention disorders, it can be determined if there exists incipient dementia or not. While undergoing resonance, the patient is given cognitive tasks of a simple nature and targeting a specific function, for example, attention, memory, orientation, discrimination, amongst others, with the aim of measuring the neuronal activity of the different parts of the patient’s brain while undertaking these cognitive tasks.

Garazi Andonegi | alfa
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>