Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first 3 Teslas magnetic resonance imager for research

27.10.2006
The University Hospital at the University of Navarra and the Applied Medicine Research Centre (CIMA) of the University has recently acquired a 3 Teslas magnetic resonance imager for joint use, the first for research applications in Spain.

The 3 Teslas is the magnetic resonance imaging unit with the highest strength currently permitted by international medical bodies for the morphological study of the human body.

Enhanced precision

The University Hospital at the University of Navarra currently has two other magnetic resonance units. The first of these has a strength of 0.2 Teslas (unit of magnetic field) with a C-shape or “open” structure. Apart from this, the hospital also has a 1.5 Teslas unit of a cylindrical shape.

The fundamental difference between the resonance units is marked by the intensity of the main magnetic field. There currently exist imaging units that have strengths from 0.2 Teslas and others that are currently in an experimental phase and reach a strength of 7 Teslas.

The most notable advantage of the 3 Teslas unit is its high precision given that it enables the recording of an enhanced image quality in less exploration time. Moreover, the imaging unit will be used to continue lines of research in close collaboration with CIMA, the most important of which involve the study of Alzheimer’s Disease and Parkinson’s.

Specialist medical uses

At a health care level, the medical specialities to benefit most from the acquisition of this unit, and in which the use is the most novel, are neuro-radiology, imaging diagnosis in muscular-skeletal injuries and angiography by Magnetic Resonance. Besides, there exist other areas of the body the study of which will also be enhanced by the use of 3 Teslas resonance such as the abdomen, the breast and the heart, amongst others.

Likewise, the greater strength of the magnetic field enables the optimisation of highly specialised techniques such as, for example, diffusion (used, fundamentally, for the study of the brain), perfusion (blood circulation system) and functional magnetic resonance.

Molecular radiology

The 3 Teslas unit also provides new care possibilities as regards molecular radiology. The new concept of imaging procedures involves the use of substances that are deposited at a molecular level and the behaviour of which, observed using various techniques, enables us to make a diagnosis and to differentiate the various elements under study. For example, the early diagnostic search for a cancer prior to it reaching a certain size.

Side effects

Despite the overall innocuousness of the exploration and diagnostic technique, there are certain patients for which its use has side effects, basically those with pacemakers given that the magnetic fields render this heart apparatus inoperable. Any ferromagnetic metallic structures have to be carefully monitored before introducing a patient into a strong magnetic field, as the influence of the field may cause these metal structures to move or their temperature to rise.

Neuroimaging in Parkinson’s and Alzheimer

The acquisition of the 3 Teslas magnetic resonance imaging unit will enhance Functional Neuroimaging research – already initiated at the Applied Medicine Research Centre (CIMA) of the University.

A number of research projects into Parkinson’s disease focus on the role of the basal ganglia - altered with this condition - and the perception of tactile, auditory or visual stimuli. Within this line of research, one of the priority studies is related to the control of voluntary movement. For the patient with Parkinson’s, and using magnetic resonance, the areas of the brain that function while carrying out complex manual movements are identified and likewise how this cerebral activity is modified with learning. It is of interest to know the plasticity of these altered neuronal populations and how they react to and change with medication.

Another important line of research involves cognitive neurology, related to the onset of dementia. For example, in persons with memory or attention disorders, it can be determined if there exists incipient dementia or not. While undergoing resonance, the patient is given cognitive tasks of a simple nature and targeting a specific function, for example, attention, memory, orientation, discrimination, amongst others, with the aim of measuring the neuronal activity of the different parts of the patient’s brain while undertaking these cognitive tasks.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1067

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>