Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like a snail through the intestinal canal

21.09.2006
The medical device currently used for intestinal research, the colonsope, causes patients great discomfort. At TU Delft, an alternative method has been developed, inspired by the way in which snails move. On September 18, researcher Dimitra Dodou received her PhD degree from TU Delft based on this research subject.

The intestines are an extremely difficult area to navigate through with a medical device. Yet, many people need to have intestinal examinations done to determine if, for example, they have intestinal cancer. The medical device currently used for this is the colonscope, a long, thin and flexible tube that causes patients great discomfort and pain.

For this reason, researchers have been trying to develop alternative medical devices, such as, for example, a small robot that moves independently through the intestinal tract. There is a layer of slime, called mucus, on the inside of the large intestine (colon). The robots, as they move forward under their own power, ignore this layer of mucus and try, if possible, to suck or grab on to the intestinal wall, which results in the walls being stretched and the patient feeling pain and discomfort.

A better method, according to TU Delft researcher Dimitra Dodou, is in fact to use this layer of mucus and allow the robot to imitate the forward movement of a snail. A snail leaves a trail of slime behind it on the ground. This slimy material works simultaneously as a lubricant for gliding on and as a glue which the slug can grip hold of.

An intestinal robot should also have a similar layer to use. To achieve this, an adhesive layer is added to the mucus-like properties, which allows the device to be stuck to the layer of mucus. The ability to be attached to a surface covered with lubricant is a great technological challenge, because most adhesives normally only work on 'clean' surfaces. The researchers discovered a group of polymers, so-called muco-adhesives, that are suitable for this. Dodou used a pig's intestine to evaluate how this material worked. Her findings revealed that muco-adhesives in the form of films provided by far the highest degree of friction.

Despite this, there is nevertheless no possibility of movement. A snail uses the exertions of pressure to change the characteristics of the middle layer, and thus lower the degree of friction, in order to move. In the intestine, however, pressure cannot be exerted, because this would cause the intestine to become deformed. The solution then is found in using smaller and larger surfaces that slide over each other. If a large surface coated with muco-adhesive remains still, and a relatively small surface coated with muco-adhesive begins moving in relation to the larger surface, the smaller surface has less freedom of movement. One by one the small 'hands' of the robot move forward. After this, the entire robot can be slide forward incrementally, whereupon the process of small surfaces shifting begins anew.

Additional experiments found that it is not only the size of the film surfaces, but also their shapes, which influence the degree of friction generated. It's remarkable that the degree of friction increases when the surface size decreases, as a result of holes being made in the structure of the film. It is therefore possible to influence the degree of friction by creating holes in the muco-adhesive or indeed by closing the holes.

Moreover, by selecting different shapes, which owing to their compact size can achieve high degrees of friction, the device can be made smaller.

The researchers are currently building a prototype that will be tested in living pigs. We must however wait a while longer until a fully developed medical device is available.

Maarten van der Sanden | alfa
Further information:
http://www.delta.tudelft.nl/images/slakken.wmv

More articles from Medical Engineering:

nachricht An LED-based device for imaging radiation induced skin damage
30.03.2017 | The Optical Society

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>