Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful radiation source to further cancer research

12.07.2006
Plans to construct Europe's most intense terahertz (THz) radiation source to further development of cancer research are underway at the University of Liverpool

Physicists will construct an ultra-high intensity THz beamline and attempt to destroy skin cancer cells specially grown in a new tissue culture facility. The experiments will help scientists understand how to use this technology in future treatments for the disease in humans.

The THz beamline, funded by the Northwest Regional Development Agency (NWDA) through its North West Science Fund, will be developed using the prototype Fourth Generation Light Source (4GLS) being constructed at CCLRC Daresbury Laboratory, which will be used to develop light sources used in X-ray technology, laser studies and radiation sources.

Physicist, Professor Peter Weightman, said: "The prototype 4GLS facility is based on an Energy Recovery Linear accelerator. The energy produced by firing electrons around this accelerator will partly be used to power the THz beamline, which will link up to a tissue culture facility developed with scientists at the University of Nottingham.

"The culture facility will be used to grow skin cancer cells and the THz radiation will target the source of the cancer. THz is absorbed by water and cancer cells retain water, so the THz radiation should be consumed by the cell and kill it off at the source."

Terahertz radiation has also been used in the detection of concealed weapons, explosives and drugs as it has the ability to penetrate a variety of materials such as clothing, paper, cardboard, wood, masonry, plastics and ceramics. THz can also pick up on vibrations and rotations of molecules and has been useful in identifying molecules floating in space.

The team at Liverpool hope to develop these applications using the most powerful source of broad band terahertz available in Europe - a thousand times more powerful than current laboratory sources.

This will be the first time THz technology has been used on cancer cells and it will also be developed to characterise genetic material. THz has the capability of identifying mutations in DNA, which could help medics identify pharmaceutical therapies that will be compatible with individual patients' DNA information.

Dr George Baxter, NWDA Director of Science and Innovation, said: "The NWDA is delighted to support this innovative project that will help develop new technology for the treatment of cancer. Investment in this project forms part of the NWDA's commitment to build and sustain a knowledge based economy for England's North West."

Samantha Martin | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>