Scientists engineer human tissue with electricity

The technique, which uses electric fields to build up layers of cells to form a tissue, is being used to create Hematons – aggregates of blood producing cells essential in the function of healthy bone marrow.

Dr Gerard Markx, of the School of Chemical Engineering and Analytical Science, has developed the technique based on a phenomenon called dielectrophoresis.

Dr Markx said: “We have proven this technique works, and have created some very simple Hematon structures in the lab. If we can perfect this technique then it may one day be possible to create artificial bone marrow outside the body and produce any given blood type.”

Dr Markx and his research team, which includes scientists in the University’s Faculty of Life Sciences, have so far created tissue 200 microns thick using the technique.

The function of bone marrow in the body is the production of blood. The most productive part of the bone marrow is formed by the hematon. Hematons are thought to be dysfunctional in patients suffering from bone marrow diseases like leukaemia.

Tissue is made using a series of glass slides with micro-electrodes etched on top of them. A solution containing cells is introduced to the slides. Electric fields are then created between the electrodes by running a small AC current through them.

In a similar way to which iron filings are attracted to the poles of magnets, the cells are attracted to the regions between the electrodes. As the cells collect together layers of cells build up, forming tissue.

Dr Markx said: “The use of electricity enables greater control over the position of the cells than conventional techniques. By varying the voltage and using different electrode shapes, cells can be positioned and stacked on top of each other in any pattern. Different electric fields can also be used to attract different types of cells. Most importantly, cells can be kept alive and active.”

The micro-electrodes used measure between 50-250 microns in size and can be positioned in any formation.

Media Contact

Simon Hunter alfa

More Information:

http://www.manchester.ac.uk

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors