Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space technology to help hospitals contain spread of avian flu infection

11.05.2006

In response to concerns from hospitals to prepare for eventual pandemic flu outbreaks, the French company AirInSpace, with support from ESA’s Technology Transfer Programme, has successfully adapted technology developed to protect astronauts for use in critical care centres to protect immune-deficient patients against airborne pathogens such as the avian flu virus.

Independent tests conducted at the Laboratory of Virology and Viral Pathogenesis in Lyon, France, by Professor Bruno Lina confirmed this week that AirInSpace’s Plasmer™ bioprotection system completely eliminates airborne avian flu virus from highly concentrated aerosols.

The technology for the biological decontamination of air onboard manned spacecraft was invented in the early 90s by a group of Russian scientists. In 1997 the Russian space station MIR was equipped with Plasmer reactors to protect cosmonauts and electronic equipment from bacteria, viruses and fungal contamination. In April 2001, reactors were also installed to clean the air from micro-organisms in the Russian segments of the International Space Station.

European space industry has invested in research and development of similar systems to clean air on-board spacecraft, and has achieved excellent results in air monitoring and purification for manned space missions. For example, Italian industry has developed the life support system shared by the Italian Space Agency’s Multi-Purpose Logistics Modules (MPLM) and ESA’s recently completed Columbus laboratory, ready for the International Space Station.

Space tech at work in hospitals

Plasmer is a multistage system using strong electric fields and cold-plasma chambers to eliminate micro-organisms in the air. With support from ESA’s Technology Transfer and Promotion Office, AirInSpace used this space technology in 2001 to develop a transportable and protective unit for use in hospitals and emergency scenarios, providing an easily deployable clean room.

"With the special Plasmer technology we have managed to develop an innovative solution to provide clean air by destroying more than 99.9% of micro-organisms, responding to the special needs of immune-compromised patients in hospitals," said Laurent Fullana, CEO of AirInSpace.

"Our system ’ImmunairTM’ uses five Plasmer reactors to provide a clean-air ’tent’, free of infective germs around a patient’s bed. It is targeted primarily for immuno-haematology, oncology, reanimation and transplant hospital departments.”

A smaller mobile medical device, named PlasmairTM has been successfully launched to help contain infection risks and meet air quality standards in operating theatres, cytotoxic preparation rooms, research labs, intensive care, and sterilization rooms.

Immunair and Plasmair have now been used in more than 70 medical centres in France.

"Mobile equipment using this type of technology could be used to control the risks of cross-contamination in case of patient isolation required during a pandemic outbreak," said Professor Lina, Head of the French National Reference Centre for the Flu and one of the leading bird-flu experts in France.

"In case of a local avian flu outbreak, our Plasmair and Immunair systems could be put in place within hours to establish emergency temporary hospital facilities, for example in schools, for more people than conventional local hospitals can handle," Fullana added, confirming that interest has already been expressed from several authorities to establish portable emergency facilities using Plasmer bioprotection systems.

AirInSpace is actively working to expand the use of the Plasmer technology in new air treatment systems for non-hospital applications, such as commercial airliners, private jets, other transportation means, industrial environments and residential usage.

Pierre Brisson | alfa
Further information:
http://www.esa.int/SPECIALS/Technology_Transfer/SEMQ5NOFGLE_0.html

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>