Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space technology to help hospitals contain spread of avian flu infection

11.05.2006

In response to concerns from hospitals to prepare for eventual pandemic flu outbreaks, the French company AirInSpace, with support from ESA’s Technology Transfer Programme, has successfully adapted technology developed to protect astronauts for use in critical care centres to protect immune-deficient patients against airborne pathogens such as the avian flu virus.

Independent tests conducted at the Laboratory of Virology and Viral Pathogenesis in Lyon, France, by Professor Bruno Lina confirmed this week that AirInSpace’s Plasmer™ bioprotection system completely eliminates airborne avian flu virus from highly concentrated aerosols.

The technology for the biological decontamination of air onboard manned spacecraft was invented in the early 90s by a group of Russian scientists. In 1997 the Russian space station MIR was equipped with Plasmer reactors to protect cosmonauts and electronic equipment from bacteria, viruses and fungal contamination. In April 2001, reactors were also installed to clean the air from micro-organisms in the Russian segments of the International Space Station.

European space industry has invested in research and development of similar systems to clean air on-board spacecraft, and has achieved excellent results in air monitoring and purification for manned space missions. For example, Italian industry has developed the life support system shared by the Italian Space Agency’s Multi-Purpose Logistics Modules (MPLM) and ESA’s recently completed Columbus laboratory, ready for the International Space Station.

Space tech at work in hospitals

Plasmer is a multistage system using strong electric fields and cold-plasma chambers to eliminate micro-organisms in the air. With support from ESA’s Technology Transfer and Promotion Office, AirInSpace used this space technology in 2001 to develop a transportable and protective unit for use in hospitals and emergency scenarios, providing an easily deployable clean room.

"With the special Plasmer technology we have managed to develop an innovative solution to provide clean air by destroying more than 99.9% of micro-organisms, responding to the special needs of immune-compromised patients in hospitals," said Laurent Fullana, CEO of AirInSpace.

"Our system ’ImmunairTM’ uses five Plasmer reactors to provide a clean-air ’tent’, free of infective germs around a patient’s bed. It is targeted primarily for immuno-haematology, oncology, reanimation and transplant hospital departments.”

A smaller mobile medical device, named PlasmairTM has been successfully launched to help contain infection risks and meet air quality standards in operating theatres, cytotoxic preparation rooms, research labs, intensive care, and sterilization rooms.

Immunair and Plasmair have now been used in more than 70 medical centres in France.

"Mobile equipment using this type of technology could be used to control the risks of cross-contamination in case of patient isolation required during a pandemic outbreak," said Professor Lina, Head of the French National Reference Centre for the Flu and one of the leading bird-flu experts in France.

"In case of a local avian flu outbreak, our Plasmair and Immunair systems could be put in place within hours to establish emergency temporary hospital facilities, for example in schools, for more people than conventional local hospitals can handle," Fullana added, confirming that interest has already been expressed from several authorities to establish portable emergency facilities using Plasmer bioprotection systems.

AirInSpace is actively working to expand the use of the Plasmer technology in new air treatment systems for non-hospital applications, such as commercial airliners, private jets, other transportation means, industrial environments and residential usage.

Pierre Brisson | alfa
Further information:
http://www.esa.int/SPECIALS/Technology_Transfer/SEMQ5NOFGLE_0.html

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>