Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free-Electron Laser Targets Fat

10.04.2006

Fat may have finally met its match: laser light. Researchers at the Wellman Center for Photomedicine at Massachusetts General Hospital, Harvard Medical School and the Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) have shown, for the first time, that a laser can preferentially heat lipid-rich tissues, or fat, in the body without harming the overlying skin. Laser therapies based on the new research could treat a variety of health conditions, including severe acne, atherosclerotic plaque, and unwanted cellulite. The result will be presented at the American Society for Laser Medicine and Surgery (ASLMS) 26th Annual Meeting in Boston, Mass.

In the first part of the study, the researchers used human fat obtained from surgically discarded normal tissue. Based on a fat absorption spectrum, tissue was exposed to a range of wavelengths of infrared laser light (800-2600 nanometers) using the Free-Electron Laser facility at Jefferson Lab. The researchers measured how selected wavelengths heated the fat and compared the result to a similar experiment conducted with pure water. At most infrared wavelengths, water is more efficiently heated by infrared light; however, the researchers found three wavelengths 915, 1210 and 1720 nm where fat was more efficiently heated than water.

The researchers then exposed fresh, intact pig skin-and-fat tissue samples, about two inches thick, to free-electron laser infrared light centered around the two most promising wavelengths, 1210 and 1720 nm. To imitate potential surgical conditions, the pig skin was placed next to a cold window, which mimicked the application of a cold compress to the skin prior to laser exposure. The researchers zapped samples with beams of infrared laser light ranging from eight to 17 mm wide for about 16 seconds. They found that the 1210 nm wavelength preferentially heated pig fat up to 1 cm deep, without damaging the overlying skin. At 1210 nm, laser-induced heating of fat was more than twice that of the overlying skin; at 1720 nm, it was about 1.7 times that of skin.

Rox Anderson, lead author on the study and a practicing dermatologist at Harvard, says the results provide a proof of principle for the use of selective photothermolysis, selectively heating tissues with light, for several potential medical applications. Dr. Anderson is most excited about the potential for using lasers to target sebaceous glands. The root cause of acne is a lipid-rich gland, the sebaceous gland, which sits a few millimeters below the surface of the skin, Anderson says, We want to be able to selectively target the sebaceous gland, and this research shows that if we can build lasers at this region of the spectrum, we may be able to do that.

He says a selective laser treatment for acne could potentially replace the best acne drug, which is isotretinoin (commonly known as Accutane. The drug has major side effects and has been linked to severe birth defects in children whose mothers have used it while pregnant. Just last month, the FDA initiated the iPledge program in an attempt to reduce the number of pregnancies in female patients on the drug. These patients cannot obtain or fill their prescription unless they pass an initial screening and two negative pregnancy tests. The program also requires patients to promise to use two forms of contraception and submit a negative pregnancy test result each month while on the drug.

Dr. Anderson also envisions that laser treatments could emerge for other medical conditions involving lipid-rich tissues, such as atherosclerosis, which causes heart disease and stroke. Fatty plaques form in arteries, rupture, and kill millions of people each year. A selective treatment that stabilizes lipid plaques could be much better than previous attempts at laser treatment for heart disease.

We can envision a fat-seeking laser, and we’re heading down that path now, Anderson says. The next step is to specifically develop these potential applications. If successful, new lasers capable of producing the appropriate wavelengths can be commissioned to target fat, sebaceous glands or plaques in patients. Dr. Anderson and the Wellman Center in Boston have already contributed many laser therapies, including non-scarring skin treatments for birthmarks.

Anderson says this study was made possible by the physics knowledge that built the Free-Electron Laser (FEL) at Jefferson Lab and a grant from the Department of Defense for the exploration of medical uses for FELs. The Jefferson Lab FEL is an energy-recovering machine that produces laser light at the right wavelengths and right power that we need to do this research. This is a bit of a plug for the value of these very high-energy, accelerator-based lasers for physics. Because, in fact, they allow us to do experiments we couldn’t do otherwise, he explains.

Fred Dylla, FEL project manager, agrees. The FEL has opened up a wide variety of research opportunities in all the sciences and is leading to great strides in applied research, such as defense technologies, medicine, and nanomaterials,Dylla says, Every day, we’re discovering new applications for the FEL.

The Jefferson Lab FEL is built on the same technology -- superconducting radiofrequency accelerator technology -- that drives the lab’s CEBAF accelerator. CEBAF provides a nearly continuous beam of electrons for nuclear physics experiments. The superconducting radiofrequency accelerator technology that the FEL is built on allows us to tune laser light through a wide range of frequencies, including the infrared, terahertz, and soon, ultraviolet. Traditional lasers don’t have that capability; they can only provide light at one frequency.

These research results will be presented at the American Society for Laser Medicine and Surgery (ASLMS) 26th Annual Meeting on Sunday, April 9 in Boston, Mass. The talk is titled Action Spectrum for Selective Photothermal Excitation of Fatty Tissue and will be delivered at 11:46 a.m. in the Sheraton Grand Ballroom during the Dermatoplastics session of the meeting.

This work was supported in part by the Department of Defense; by the Office of Naval Research; and by the Commonwealth of Virginia.

Kandice Carter
Jefferson Lab
kcarter@jlab.org or (757) 269-7263
Beverly Dammin
Wellman Center for Photomedicine
bdammin@partners.org or (617) 726-3308

Kandice Carter | EurekAlert!
Further information:
http://www.jlab.org/FEL/feldescrip.html

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>