4D ecography for the diagnosis of prenatal cardiopathy

“4D ecography may well be a significant advance in the prenatal diagnosis of congenital cardiopathy”, explained Dr. Juan Luis Alcázar, specialist at the Obstetrics and Gynaecology Department of the University Hospital (University of Navarre).

One of the most recent novelties in ecographic studies has been the application of a fourth dimension, i.e. movement added to three-dimensional reconstruction. According to Dr. Alcázar, “the development of the STIC system, carrying out the spatio-temporal correlation of images, adds movement to 3D ecography. In this way, apart from obtaining exclusively anatomic information, structure from a functional perspective is evaluated”.

Foetal cardiopathy

One of the great advances of this technique is its application to the foetal heart. Concretely, the STIC system enables a 3D reconstruction of the foetal heart in real time and with movement. This procedure changes the approach to prenatal diagnosis of congenital cardiopathy. It is one of the most common congenital anomalies of the foetus, although to date it has been difficult to detect in pregnancy. The foetal heart is a very small organ that moves very fast (120 beats a minute) and thus, its anatomical study is complicated.

The spectrum of foetal cardiopathies is very wide, from asymptomatic lesions to malformations incompatible with life, needing specialised training. In this sense, knowledge of a foetal cardiopathy can change procedures during childbirth, such as attending a reference centre that guarantees immediate specialised attention. STIC provides important information that can increase the accuracy of the prenatal diagnosis of these pathologies. Apart from facilitating the detection of more lesions, this system enables a refining of the diagnosis and provides guidelines for early treatment.

Another application for the 7system being studied involves foetal movements. The Department of Gynaecology is working in conjunction with that of Neuropediatrics to establish movement patterns for foetuses of between 24 and 34 weeks. When a child of this gestational age is born and their movements studied, normally parameters for children of 40 weeks are applied; nevertheless, their neurological maturity is not the same and, thus, there exist doubts as to whether the patterns used are the correct ones.

Four dimensions’ technology enables the study of the foetus while it is within the maternal uterus and the visualisation of the movements of the limbs, facial gestures, and so on. These data enables the establishment of patterns more adjusted to their intrauterine neurological development for their subsequent postnatal examination.

Media Contact

Garazi Andonegi alfa

More Information:

http://www.basqueresearch.com

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors