Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From aircraft aerodynamics to improved heart implants

28.09.2005


At first glance airplane wings and human hearts have little in common, but, say a team of European researchers, a technology used to measure airflow over wings can now be used to help keep hearts in working order.

The researchers optimised a Particle Image Velocimetry (PIV) system traditionally used to improve the aerodynamics of aircraft wings to make it capable of accurately measuring the effects of medical implants on blood flow. Their work will allow medical device manufacturers to improve the design of devices such as heart valves and pumps, and provide doctors with a way to detect – and ultimately correct - the side-effects that commonly afflict patients who receive implants.

“This system could revolutionise heart treatments,” says Fabrizio Lagasco, coordinator of the SMART-PIV project.

The SMART-PIV system - which combines the optimised PIV hardware with advanced image processing and numerical analysis software over a parallel computing subsystem - fills a gap in the heart device sector that has limited the efficiency of implants.

Though ultrasound scans allow doctors to view potential problems with the natural heart, as well as locally in the circulatory system, they fall short of providing a detailed analysis of the causes of problems related to blood flow when modified by artificial implanted devices. In the field of biomedical device design, experiments involving the implantation of medical devices into animals can prove that a device functions, but such in vivo trials are lengthy and costly as well as not always being indicative of the effects the implant will have in humans.

Complications, ranging from the minor to the potentially fatal, are widespread among patients who receive implants either as a long-term solution to a failing heart or as a temporary ‘bridge’ while they await a transplant. Though such implants play a vital role in prolonging the lives of people with cardiovascular disease, reducing their side-effects through improved in vitro design would undoubtedly increase patients’ quality of life and their chances of long-term survival. That is particularly true in the case of ventricular-assist devices (VADs), battery-operated pumps that support a failing left ventricle and help supply blood to the rest of the body. VADs are primarily used to buy patients time until a heart donor can be found, but even in a best case scenario they can currently only extend a patient’s life by up to two years and frequently just a few months.

By applying PIV technology in their development Lagasco expects it would be possible to greatly enhance their performance and grant patients more time to obtain a transplant.

“With so few donors available compared to the people who need new hearts the number of people with implants is only going to continue increasing,” notes Lagasco.

Indeed, cardiovascular disease is the principal cause of death in Europe, claiming around four million lives a year. “That is why we saw the need for this technology to be applied in the medical sector,” Lagasco says.

At the core of the project’s PIV system is miniaturised optical sensor technology using ultra-thin laser light sheets to capture images of the fluid dynamics of blood flowing through implanted devices. Numerical analysis is carried out on the images in a parallel computing subsystem allowing device designers or doctors to detect problems with the blood flow, such as high velocity gradients that can cause blood cell damage, or low velocity that could lead to thrombosis or coagulation.

Based on the results of trials, by employing parallel computing the analysis can be performed in under a day in 80 per cent of cases and in less than two days in all cases.

“As computer processing power increases we estimate that within two years the analysis could probably be performed in two to three hours,” Lagasco says. “That compares with the weeks or months it can take to obtain results from using traditional PIV systems.”

Having tested the system in vitro during the project, the partners are planning to develop and evaluate it further in trials involving a medical device manufacturer.

“We’re currently in talks with Sorin, a multinational producer of heart valves, and with an Italian SME that is looking to use SMART-PIV to optimise the design of their VADs,” Lagasco says. “The commercial possibilities for the system are therefore extensive and a product based on the project results will probably be in use within the next few years.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>