Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From aircraft aerodynamics to improved heart implants

28.09.2005


At first glance airplane wings and human hearts have little in common, but, say a team of European researchers, a technology used to measure airflow over wings can now be used to help keep hearts in working order.

The researchers optimised a Particle Image Velocimetry (PIV) system traditionally used to improve the aerodynamics of aircraft wings to make it capable of accurately measuring the effects of medical implants on blood flow. Their work will allow medical device manufacturers to improve the design of devices such as heart valves and pumps, and provide doctors with a way to detect – and ultimately correct - the side-effects that commonly afflict patients who receive implants.

“This system could revolutionise heart treatments,” says Fabrizio Lagasco, coordinator of the SMART-PIV project.

The SMART-PIV system - which combines the optimised PIV hardware with advanced image processing and numerical analysis software over a parallel computing subsystem - fills a gap in the heart device sector that has limited the efficiency of implants.

Though ultrasound scans allow doctors to view potential problems with the natural heart, as well as locally in the circulatory system, they fall short of providing a detailed analysis of the causes of problems related to blood flow when modified by artificial implanted devices. In the field of biomedical device design, experiments involving the implantation of medical devices into animals can prove that a device functions, but such in vivo trials are lengthy and costly as well as not always being indicative of the effects the implant will have in humans.

Complications, ranging from the minor to the potentially fatal, are widespread among patients who receive implants either as a long-term solution to a failing heart or as a temporary ‘bridge’ while they await a transplant. Though such implants play a vital role in prolonging the lives of people with cardiovascular disease, reducing their side-effects through improved in vitro design would undoubtedly increase patients’ quality of life and their chances of long-term survival. That is particularly true in the case of ventricular-assist devices (VADs), battery-operated pumps that support a failing left ventricle and help supply blood to the rest of the body. VADs are primarily used to buy patients time until a heart donor can be found, but even in a best case scenario they can currently only extend a patient’s life by up to two years and frequently just a few months.

By applying PIV technology in their development Lagasco expects it would be possible to greatly enhance their performance and grant patients more time to obtain a transplant.

“With so few donors available compared to the people who need new hearts the number of people with implants is only going to continue increasing,” notes Lagasco.

Indeed, cardiovascular disease is the principal cause of death in Europe, claiming around four million lives a year. “That is why we saw the need for this technology to be applied in the medical sector,” Lagasco says.

At the core of the project’s PIV system is miniaturised optical sensor technology using ultra-thin laser light sheets to capture images of the fluid dynamics of blood flowing through implanted devices. Numerical analysis is carried out on the images in a parallel computing subsystem allowing device designers or doctors to detect problems with the blood flow, such as high velocity gradients that can cause blood cell damage, or low velocity that could lead to thrombosis or coagulation.

Based on the results of trials, by employing parallel computing the analysis can be performed in under a day in 80 per cent of cases and in less than two days in all cases.

“As computer processing power increases we estimate that within two years the analysis could probably be performed in two to three hours,” Lagasco says. “That compares with the weeks or months it can take to obtain results from using traditional PIV systems.”

Having tested the system in vitro during the project, the partners are planning to develop and evaluate it further in trials involving a medical device manufacturer.

“We’re currently in talks with Sorin, a multinational producer of heart valves, and with an Italian SME that is looking to use SMART-PIV to optimise the design of their VADs,” Lagasco says. “The commercial possibilities for the system are therefore extensive and a product based on the project results will probably be in use within the next few years.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>