Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From aircraft aerodynamics to improved heart implants

28.09.2005


At first glance airplane wings and human hearts have little in common, but, say a team of European researchers, a technology used to measure airflow over wings can now be used to help keep hearts in working order.

The researchers optimised a Particle Image Velocimetry (PIV) system traditionally used to improve the aerodynamics of aircraft wings to make it capable of accurately measuring the effects of medical implants on blood flow. Their work will allow medical device manufacturers to improve the design of devices such as heart valves and pumps, and provide doctors with a way to detect – and ultimately correct - the side-effects that commonly afflict patients who receive implants.

“This system could revolutionise heart treatments,” says Fabrizio Lagasco, coordinator of the SMART-PIV project.

The SMART-PIV system - which combines the optimised PIV hardware with advanced image processing and numerical analysis software over a parallel computing subsystem - fills a gap in the heart device sector that has limited the efficiency of implants.

Though ultrasound scans allow doctors to view potential problems with the natural heart, as well as locally in the circulatory system, they fall short of providing a detailed analysis of the causes of problems related to blood flow when modified by artificial implanted devices. In the field of biomedical device design, experiments involving the implantation of medical devices into animals can prove that a device functions, but such in vivo trials are lengthy and costly as well as not always being indicative of the effects the implant will have in humans.

Complications, ranging from the minor to the potentially fatal, are widespread among patients who receive implants either as a long-term solution to a failing heart or as a temporary ‘bridge’ while they await a transplant. Though such implants play a vital role in prolonging the lives of people with cardiovascular disease, reducing their side-effects through improved in vitro design would undoubtedly increase patients’ quality of life and their chances of long-term survival. That is particularly true in the case of ventricular-assist devices (VADs), battery-operated pumps that support a failing left ventricle and help supply blood to the rest of the body. VADs are primarily used to buy patients time until a heart donor can be found, but even in a best case scenario they can currently only extend a patient’s life by up to two years and frequently just a few months.

By applying PIV technology in their development Lagasco expects it would be possible to greatly enhance their performance and grant patients more time to obtain a transplant.

“With so few donors available compared to the people who need new hearts the number of people with implants is only going to continue increasing,” notes Lagasco.

Indeed, cardiovascular disease is the principal cause of death in Europe, claiming around four million lives a year. “That is why we saw the need for this technology to be applied in the medical sector,” Lagasco says.

At the core of the project’s PIV system is miniaturised optical sensor technology using ultra-thin laser light sheets to capture images of the fluid dynamics of blood flowing through implanted devices. Numerical analysis is carried out on the images in a parallel computing subsystem allowing device designers or doctors to detect problems with the blood flow, such as high velocity gradients that can cause blood cell damage, or low velocity that could lead to thrombosis or coagulation.

Based on the results of trials, by employing parallel computing the analysis can be performed in under a day in 80 per cent of cases and in less than two days in all cases.

“As computer processing power increases we estimate that within two years the analysis could probably be performed in two to three hours,” Lagasco says. “That compares with the weeks or months it can take to obtain results from using traditional PIV systems.”

Having tested the system in vitro during the project, the partners are planning to develop and evaluate it further in trials involving a medical device manufacturer.

“We’re currently in talks with Sorin, a multinational producer of heart valves, and with an Italian SME that is looking to use SMART-PIV to optimise the design of their VADs,” Lagasco says. “The commercial possibilities for the system are therefore extensive and a product based on the project results will probably be in use within the next few years.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>