Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Short-term bio sensors monitor from afar


A temporary under-the-skin sensor could monitor a variety of health indicators for soldiers, athletes, diabetics, infants, and critically ill patients without wires and at a distance, according to a team of Penn State chemical engineers.

"We were asked to develop micro sensors for metabolic monitoring of troops," says Dr. Michael Pishko, professor of chemical engineering and materials science and engineering. "These implantable sensors are intended to monitor the physiology of troops in the field."

By monitoring glucose, oxygen, lactose and pyruvate, the U.S. Army hopes to be able to assess the metabolic health of troops in the field and improve the response to the injured.

The researchers, who include Pishko, Dr. Amos M. Mugweru, postdoctoral researcher, and Becky Clark, graduate student in chemical engineering, designed an implantable glucose sensor of glucose oxidase molecules – the enzyme that reacts to glucose – immobilized in photopolymerized and microlithographically patterned film. The polymer exchanges electrons with the glucose oxide to produce a current, which is the signal that can be monitored from afar.

"We cannot make the sensors too small, because they need to be big enough to handle and sturdy enough to be inserted without bending or breaking," says Pishko. "We do want to have two to four sensors per indicator so that the signal is verifiable and viable even if one sensor fails."

Sensors could be bundled in groups depending on the metabolite to be monitored.

"The enzymes entrapped in these polymer films and containing biocompatible hydrogels show good stability and sensitivity," the researchers told attendees today (Aug. 31) at the 230th American Chemical Society National Meeting in Washington, D.C.

The military is interested in monitoring glucose, pyruvate, lactate and oxygen for an overall metabolic picture, so four separate sets of sensors would be necessary, each individually addressable. Personnel in a distant base camp could monitor the soldiers’ health and relay information into the field. These metabolic readings would also help medics decide who to treat first and assess the severity of injuries.

Individual sensors also have their place. The researchers are working with the Juvenile Diabetes Foundation on glucose sensors. Exercise physiologists would like to be able to monitor lactate as a measure of how hard muscles are working. Pediatricians would also like to be able to monitor the functions of the tiniest of newborns.

Because these sensors would be implantable and temporary, one day, marathon runners might need not only to pin on their numbers, but also to receive their implantable metabolic sensor array before approaching the starting line.

"The body is hostile to this kind of implant and the sensors will eventually wear out," says Pishko. "For these applications, the sensors only need to work for a short period of time. Even for the soldiers, 24 to 72 hours is sufficient."

A’ndrea Elyse Messer | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>