Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers use diffusion MRI technique to monitor ultrasound uterine fibroid treatment

09.08.2005


Johns Hopkins researchers have, for what is believed to be the first time, used a magnetic resonance imaging (MRI) technique called diffusion-weighted MRI (DWI), a technique that images the movement, or diffusion, of water molecules in tissues, to successfully determine the effectiveness of high-intensity focused ultrasound for treating uterine fibroids. Uterine fibroids are noncancerous tumors that line the uterine wall and can cause intense pain and bleeding. The study appears in the July edition of Radiology.

Ultrasound treatment works by directing focused ultrasound energy that heats the targeted tissue to induce cell damage or death without damaging the surrounding tissue. Because it’s noninvasive, the treatment provides a desirable alternative to conventional surgery and was undergoing clinical trials nationally and was recently given FDA approval.

When fibroids or other tissues are damaged or destroyed by ultrasound treatment, water molecules are trapped within the tissue because the cellular pumps that control the movement of water into or out of cells no longer function properly. By measuring the movement of this water using DWI, the researchers hoped to better gauge the impact of treatment on the fibroids by using a quantitative biophysical parameter called the apparent diffusion coefficient (ADC).

Currently, treatment success is determined using regular MRI with a contrast agent (a dye injected into the patient to enhance the resulting image). However, the image produced during this procedure does not precisely show functional information on the degree of fibroid destruction. Therefore, physicians also rely on questionnaires administered to patients after their fibroid treatment, which often are very subjective and unreliable.

In the study, 14 patients with uterine fibroids received ultrasound treatment and subsequent MR imaging using three different MR techniques: conventional MRI, MRI with contrast material, and DWI MRI. Results showed significantly greater signal intensity on DWI of ultrasound treated fibroids than on the images of untreated fibroids or treated fibroids obtained with the other MR methods. These results were confirmed in the 12 patients who took part in the six-month follow up study. Also observed were differences in the ADC. The DWI technique was able to map the ADC in fibroids, showing lower ADC values in treated fibroids than in surrounding tissue, a measure of restricted cellular water flow due to the ultrasound treatment.

"While these results are preliminary and more research is needed, they strongly suggest that the diffusion-weighted MR technique provides images that show functional changes and the extent of fibroid damage from treatment. DWI may be useful for monitoring the effects of ultrasound treatment on uterine fibroids," says Michael Jacobs, Ph.D., assistant professor of radiology and oncology at the Russell H. Morgan Department of Radiology and Radiological Science at Johns Hopkins. "The results also suggest that this imaging technique may be useful for monitoring other focused ultrasound treatments for lesions in the prostate, and breast, when available." The other co-authors of the study were Hyun "Kevin" Kim, M.D. and Edward Herskovits, M.D., Ph.D. This study was supported in part by grants from the National Institutes of Health.

Gary Stephenson | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/mediaII/RSSinstructions.html

More articles from Medical Engineering:

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

nachricht Why we need erasable MRI scans
26.04.2018 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>