Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers use diffusion MRI technique to monitor ultrasound uterine fibroid treatment

09.08.2005


Johns Hopkins researchers have, for what is believed to be the first time, used a magnetic resonance imaging (MRI) technique called diffusion-weighted MRI (DWI), a technique that images the movement, or diffusion, of water molecules in tissues, to successfully determine the effectiveness of high-intensity focused ultrasound for treating uterine fibroids. Uterine fibroids are noncancerous tumors that line the uterine wall and can cause intense pain and bleeding. The study appears in the July edition of Radiology.

Ultrasound treatment works by directing focused ultrasound energy that heats the targeted tissue to induce cell damage or death without damaging the surrounding tissue. Because it’s noninvasive, the treatment provides a desirable alternative to conventional surgery and was undergoing clinical trials nationally and was recently given FDA approval.

When fibroids or other tissues are damaged or destroyed by ultrasound treatment, water molecules are trapped within the tissue because the cellular pumps that control the movement of water into or out of cells no longer function properly. By measuring the movement of this water using DWI, the researchers hoped to better gauge the impact of treatment on the fibroids by using a quantitative biophysical parameter called the apparent diffusion coefficient (ADC).

Currently, treatment success is determined using regular MRI with a contrast agent (a dye injected into the patient to enhance the resulting image). However, the image produced during this procedure does not precisely show functional information on the degree of fibroid destruction. Therefore, physicians also rely on questionnaires administered to patients after their fibroid treatment, which often are very subjective and unreliable.

In the study, 14 patients with uterine fibroids received ultrasound treatment and subsequent MR imaging using three different MR techniques: conventional MRI, MRI with contrast material, and DWI MRI. Results showed significantly greater signal intensity on DWI of ultrasound treated fibroids than on the images of untreated fibroids or treated fibroids obtained with the other MR methods. These results were confirmed in the 12 patients who took part in the six-month follow up study. Also observed were differences in the ADC. The DWI technique was able to map the ADC in fibroids, showing lower ADC values in treated fibroids than in surrounding tissue, a measure of restricted cellular water flow due to the ultrasound treatment.

"While these results are preliminary and more research is needed, they strongly suggest that the diffusion-weighted MR technique provides images that show functional changes and the extent of fibroid damage from treatment. DWI may be useful for monitoring the effects of ultrasound treatment on uterine fibroids," says Michael Jacobs, Ph.D., assistant professor of radiology and oncology at the Russell H. Morgan Department of Radiology and Radiological Science at Johns Hopkins. "The results also suggest that this imaging technique may be useful for monitoring other focused ultrasound treatments for lesions in the prostate, and breast, when available." The other co-authors of the study were Hyun "Kevin" Kim, M.D. and Edward Herskovits, M.D., Ph.D. This study was supported in part by grants from the National Institutes of Health.

Gary Stephenson | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/mediaII/RSSinstructions.html

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>