Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers use diffusion MRI technique to monitor ultrasound uterine fibroid treatment

09.08.2005


Johns Hopkins researchers have, for what is believed to be the first time, used a magnetic resonance imaging (MRI) technique called diffusion-weighted MRI (DWI), a technique that images the movement, or diffusion, of water molecules in tissues, to successfully determine the effectiveness of high-intensity focused ultrasound for treating uterine fibroids. Uterine fibroids are noncancerous tumors that line the uterine wall and can cause intense pain and bleeding. The study appears in the July edition of Radiology.

Ultrasound treatment works by directing focused ultrasound energy that heats the targeted tissue to induce cell damage or death without damaging the surrounding tissue. Because it’s noninvasive, the treatment provides a desirable alternative to conventional surgery and was undergoing clinical trials nationally and was recently given FDA approval.

When fibroids or other tissues are damaged or destroyed by ultrasound treatment, water molecules are trapped within the tissue because the cellular pumps that control the movement of water into or out of cells no longer function properly. By measuring the movement of this water using DWI, the researchers hoped to better gauge the impact of treatment on the fibroids by using a quantitative biophysical parameter called the apparent diffusion coefficient (ADC).

Currently, treatment success is determined using regular MRI with a contrast agent (a dye injected into the patient to enhance the resulting image). However, the image produced during this procedure does not precisely show functional information on the degree of fibroid destruction. Therefore, physicians also rely on questionnaires administered to patients after their fibroid treatment, which often are very subjective and unreliable.

In the study, 14 patients with uterine fibroids received ultrasound treatment and subsequent MR imaging using three different MR techniques: conventional MRI, MRI with contrast material, and DWI MRI. Results showed significantly greater signal intensity on DWI of ultrasound treated fibroids than on the images of untreated fibroids or treated fibroids obtained with the other MR methods. These results were confirmed in the 12 patients who took part in the six-month follow up study. Also observed were differences in the ADC. The DWI technique was able to map the ADC in fibroids, showing lower ADC values in treated fibroids than in surrounding tissue, a measure of restricted cellular water flow due to the ultrasound treatment.

"While these results are preliminary and more research is needed, they strongly suggest that the diffusion-weighted MR technique provides images that show functional changes and the extent of fibroid damage from treatment. DWI may be useful for monitoring the effects of ultrasound treatment on uterine fibroids," says Michael Jacobs, Ph.D., assistant professor of radiology and oncology at the Russell H. Morgan Department of Radiology and Radiological Science at Johns Hopkins. "The results also suggest that this imaging technique may be useful for monitoring other focused ultrasound treatments for lesions in the prostate, and breast, when available." The other co-authors of the study were Hyun "Kevin" Kim, M.D. and Edward Herskovits, M.D., Ph.D. This study was supported in part by grants from the National Institutes of Health.

Gary Stephenson | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/mediaII/RSSinstructions.html

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>