Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

End in sight for the dreaded dentist drill

21.07.2008
A new technology that spots tooth decay almost as soon as it’s begun promises to reduce the need for drilling and filling, writes Patrick Walter in SCI’s Chemistry & Industry (C&I) magazine.

Drilling is one of the top dental phobias and puts thousands of people off visiting their dentist every year.

The new technology, which may be available in dental surgeries in five years from now, is based on Raman spectroscopy most commonly used to distinguish between different chemicals by identifying each molecule’s unique fingerprint. It detects decay simply and painlessly by pointing a tiny optical fibre at the tooth to check on its health.

A preliminary study at King’s College London, where the technique is being developed, found that chemical changes in the tooth could be detected by analysing how light is scattered when a laser is fired at the tooth. Researchers were able to tell healthy teeth from carious teeth because bacteria, responsible for the decay, scatter light in a different way to healthy teeth. The results were presented at Microscience 2008.

Frances Downey, a PhD student working on developing the technique at King’s College London, said: ‘The earlier you spot decay the better as you can remineralise the area so there is no cavitation and therefore no need for a filling.’

Dr Frederic Festy, who is supervising the project, is planning a larger trial using more teeth samples and hopes to move onto human trials soon. The key to the technique is its simplicity, he explains.

Currently, decaying teeth are uncovered either by visual examination or the use of x-rays, but usually by then, the damage has been done and the decayed area must be drilled out. But Dr Steven Hogg, a microbiologist at Newcastle University’s dental school, confirms that it is possible to repair teeth with a special mouthwash or fluoride varnish if dental decay is caught early enough.

The downside of developing the machines is the cost and the time it takes to do a scan – 30 seconds can be a long time for any patient to remain perfectly still.

Meral Nugent | alfa
Further information:
http://www.soci.org

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>