Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design of a new system that improves hearing in patients who carry a cochlear implant

05.03.2008
The doctoral thesis of Isaac Manuel Álvarez Ruiz has been developed in the Departments of Department of Signal Theory, Telematics, and Communication, and Department of Surgery and its Specialties of the University of Granada, and directed by Professors Ángel de la Torre Vega and Manuel Sainz Quevedo.

The main aim of this work includes improving the acquisition of Compound Action Potential records, carrying out an application analysis in the cochlear implant programming and studying the distribution of refractory periods for the neuronal population that takes part in the generation of potentials. This doctoral thesis, carried out with the support of the Austrian company Med-El, is very useful for the manufacturers of cochlear implants as the results are a source of information for their present research lines.

The cochlear implant is an electronic device designed to help patients with severe and deep hypoacusis who get very little or no benefit from conventional hearing aids. Patients who use them can detect environmental sounds, most of them are able to understand language with no need of lip-reading, and some of them can even use the phone.

This device is composed of an inner part, implanted surgically, and an outer part. In the inner part we mainly find the stimulus generator and an electrodes-bearing guide inserted all along the cochlea. The outer part is mainly composed of a microphone, a voice processor and a battery unit. So, the signal received by the microphone can be analyzed by the voice processor, which determines the instant in which electrodes should be activated as well as the level of the stimulus.

Specifically
The voice processor in the implant should be specifically programmed for each patient. In order to do so, a programmer performs some subjective tests on the patient. Carrying out this task can get especially hard with children or non-cooperative patients, whose interaction with the programmer is limited or void. So, the search for an objective measurement which provides the automatic programming for the cochlear implant is one of the main research lines opened by the manufacturers. The Compound Action Potential is included in this aim.

The author of this work, Isaac Manuel Álvarez Ruiz, states that “the major difficulty in the recording and processing of the Compound Action Potential is the stimulation device, insomuch that the stimulation signal interferes in time and frequency with the recalled potential that is meant to be observed”. In his thesis, an algorithm has been developed to allow an evaluation of the quality of a Compound Action Potential recording. “This method lets us compare the most commonly used techniques in bibliography, as well as to develop new and improved techniques to reduce the stimulation device”, points out the researcher.

The first task at the time of programming the cochlear implant is to decide which electrodes should be activated and subsequently, establish parameters for each one. So, this research has analyzed the relation between the Compound Action Potential and the cochlear implant voice processor programming map. “We have found that the appearance of the potential generally involves the electrode connection and not vice versa. According to the parameters of each electrode, it has been found that the information provided by these potentials is insufficient for an automatic adjustment of the processor, in comparison with the results of our researches. Our results prove that the Compound Action Potential allows the establishment of parameters of each electrode regarding the average values of the patient, with acceptable uncertainty levels”. This information could be very useful as complementary information, or when the subjective information from the patient is void.

Refractory periods
In addition, a study has been conducted about the distribution of refractory periods for the neuronal population that takes part in the generation of this potential. In the average patient, the value of the refractory period of the fastest neuron is about 0.8ms and half of the neurons have a refractory period lower than 1.5ms. It has been found that, as the auditory experience of the patient increases, the refractory period of the neurons that takes part in it decreases down to a stable value, that is reached 3-4 months after the start up of the voice processor.

The results of this research have resulted in an article titled ‘Generalized alternating stimulation: A novel method to reduce stimulus artifact in electrically-evoked compound action potentials’, published in 2007 in the ‘Journal of Neuroscience Methods’. Other articles are now under review.

Reference
Isaac Manuel Álvarez Ruiz. >Department of Signal Theory, Telematics, and Communication of the University of Granada.
Phone number: +34 626186403.
Email address: isamaru@ugr.es

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/verNota/prensa.php?nota=508

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>