Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Centre for Robotic Surgery created at Imperial College London

The recent impact of medical robotics in health care delivery has been substantial. Clinicians and scientists at Imperial College London have led these developments from their inception and will have the opportunity to further research and innovate in this area, thanks to a new research centre announced today (5 March).

The Hamlyn Centre for Robotic Surgery - supported by the Helen Hamlyn Trust - established at Imperial College London, will push forward the integration of robotics into medicine and patient care, with the aim of developing advanced robotic technologies that will transform conventional key-hole surgery, develop new ways of empowering robots with human intelligence, and create revolutionary miniature “microbots” that have integrated sensing and imaging for cancer surgery and treatment.

Establishing this new centre has been made possible through philanthropic support totalling £10m from both the Helen Hamlyn Trust and Lady Hamlyn personally. The Centre is to be co-directed by two UK pioneers in medical robotics, Professor Lord Ara Darzi who holds the Paul Hamlyn Chair of Surgery at Imperial College London and is an honorary consultant at Imperial College Healthcare NHS Trust and the Royal Marsden NHS Trust, and Professor Guang-Zhong Yang, Director of Medical Imaging at Imperial, supported by an interdisciplinary team of engineering and clinical scientists. The funding initiates a major campaign to establish an international centre of excellence for medical robotics in the UK.

In appreciation of the grant from The Helen Hamlyn Trust and the generous donation by Lady Hamlyn, Lord Darzi said: “Medical robotics and computer assisted surgery are used in a growing number of operating rooms around the world. This funding will allow the team to leverage our existing research programmes in pursuing adventurous, fundamentally new technologies that will allow more wide-spread use of robotics in medicine and patient care.”

He added: “This is a substantial amount of funding which will allow us to build on the current resources and infrastructure provided by Imperial College, the NHS and other funding agencies.

The Centre, which will be based at Imperial College London and a hospital in its associated NHS Trust (Imperial College Healthcare NHS Trust, St. Mary’s Hospital), will draw together under one roof world-leading experts in a range of disciplines, with the aim of creating a national resource in medical robotics that will benefit other UK research groups and industry.

Professor Guang-Zhong Yang, who will be directing the basic sciences and engineering research of the new Centre, commented: “The need to perform delicate surgical procedures safely in tight spaces where the surgeon cannot see directly has created a growing demand for devices that act as extensions of the surgeon’s eyes and hands. This creates a unique opportunity of developing new robotic devices that build on the latest developments in imaging, sensing, mechatronics, and machine vision.”

He added: “The potential benefit of medical robotics to patients is exciting and one of the major focuses of the centre is to develop new technologies such as the ‘perceptual docking’ concept for seamless integration of machine precision with human intelligence to allow safe, ubiquitous applications of robotics in healthcare.”

Sir Richard Sykes, Rector of Imperial College London, said: “Imperial College has a strong track record in pioneering surgical robotics both technically and clinically. We are very grateful for Lady Hamlyn’s generosity in initiating this major funding campaign that will establish a dedicated centre and UK focus for medical robotics. This will allow us to attract international talents and develop UK technologies that will transform the future development of medical devices. “

Lady Hamlyn, Chair of Trustees of the Helen Hamlyn Trust, said: “I am delighted that the funding from my Trust, together with my personal donation, will be contributing to the future development of robotic surgery and other innovations in this very important new field, which will greatly improve patient care in many areas, particularly in cancer care. My Trust has been closely involved with the development of robotics for some years, and this National Centre will enable Imperial to extend their pioneering work in this unique field.”

Colin Smith | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>