Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser light may be able to detect diseases on the breath

20.02.2008
New technique could help doctors screen for asthma and cancer

A team of scientists at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado (CU) at Boulder, has shown that by sampling a person’s breath with laser light they can detect molecules in the breath that may be markers for diseases like asthma or cancer.

While many studies have been done to showcase the potential of optical technologies for breath analysis, the JILA approach takes an important step toward demonstrating the full power of optics for this prospective medical application. Their findings are published in the latest issue of the Optical Society of America’s open-access journal Optics Express.

The technique, called cavity-enhanced direct optical frequency comb spectroscopy, may one day allow doctors to screen people for certain diseases simply by sampling their breath. “This technique can give a broad picture of many different molecules in the breath all at once,” says Jun Ye, who led the research. He is a fellow of JILA, a fellow of NIST and a professor adjoint at CU-Boulder’s Department of Physics.

Optical frequency comb spectroscopy was developed in the 1990s by Ye’s JILA colleague John L. Hall and Theodor W. Hänsch of Germany’s Max-Planck Institute (they shared the 2005 Nobel Prize in Physics with Roy J. Glauber for their invention). In the paper, Michael Thorpe, a graduate research assistant, Ye, and their colleagues describe the novel application of this technique to breath analysis. Optical comb spectroscopy is powerful enough to sort through all the molecules in human breath, Ye says, but it is also sensitive enough to find those rarest molecules that may be markers of specific diseases.

Every time we breathe in, we inhale a complex mixture of gasses—mostly nitrogen, oxygen, carbon dioxide, and water vapor, but also traces of other gasses, such as carbon monoxide, nitrous oxide, and methane. Each time we exhale, we blow out a slightly different mixture with less oxygen, more carbon dioxide, and a rich collection of more than a thousand types of other molecules—most of which are present only in trace amounts.

Some of these tracer breath molecules are biomarkers of disease. Just as bad breath may indicate dental problems, excess methylamine can be used to detect liver and kidney disease, ammonia on the breath may be a sign of renal failure, elevated acetone levels in the breath can indicate diabetes, and nitric oxide levels can be used to diagnose asthma. When many breath molecules are detected simultaneously, highly reliable and disease-specific information can be collected. For instance, asthma can be detected much more reliably when carbonyl sulfide, carbon monoxide, and hydrogen peroxide are all detected in parallel with nitric oxide. The reported approach offers exactly this kind of potential.

In the experiments performed by Ye and his colleagues, optical frequency comb spectroscopy was used to analyze the breath of several student volunteers. They showed that they could detect trace signatures of gasses like ammonia, carbon monoxide, and methane on their breath. In one of these measurements, they detected carbon monoxide in a student smoker and found that it was five times higher when compared to a non-smoking student.

The researchers had the students breathe into an optical cavity—a space between two standing mirrors. The optical cavity was designed so that when they aimed a pulsed laser light into it, the light bounced back and forth so many times that it covered a distance of several kilometers by the time it exited the cavity. This essentially allowed the light to sample the entire volume of the cavity, striking all the molecules therein. In addition, this lengthens the light-molecule interaction time thereby increasing the sensitivity. By comparing the light coming out of the cavity to the light that went in, Ye and his colleagues could determine which frequencies of light were absorbed and by how much. This information told them which molecules were present in the breath from the start. The remarkable combination of a broad spectral coverage of the entire comb and a sharp spectral resolution of individual comb lines allows them to sensitively identify many different molecules, as they show in their paper.

While the efficacy of this technique has yet to be evaluated in clinical trials, monitoring the breath for such biomarkers is an attractive approach to medicine because breath analysis is the ultimate non-invasive and low-cost procedure. Existing approaches to breath analysis are limited, because the equipment is either not selective enough to detect a diverse set of rare biomarkers, or it is not sensitive enough to detect trace amounts of the molecules exhaled in human breath. The biggest shortcoming of existing approaches is their inability to provide rapid and reliable breath measurements for many biomarkers. The new technique addresses these problems with its capability to rapidly, simultaneously, sensitively, and accurately detect many breath biomarkers. The results can qualitatively change the field of breath analysis, realizing its real potential as a low-cost, rapid, robust, and non-invasive method for health screening.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org
http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-4-2387

More articles from Medical Engineering:

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

nachricht New microscope technique reveals internal structure of live embryos
08.08.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>