Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling pacemakers may alleviate burden of heart disease across the globe

20.10.2010
University of Michigan Cardiovascular Center examines logistics of safe, cost-effective pacemaker donation

Millions worldwide die each year because they can't afford a pacemaker. Meanwhile heart patients in the United States say they'd be willing to donate theirs after death to someone in need.

In the current issue of Circulation, experts at the University of Michigan Cardiovascular Center examine the legality and logistics of collecting pacemakers, after they are removed for burial or cremation, for sterilization and reuse across the globe.

Small humanitarian efforts have shown reusing pacemakers is safe and effective with little risk of infection and patients live as long, and as well, with a recycled pacemaker as those who get new ones, authors say.

It's a novel approach for treating cardiovascular disease which remains the world's leading cause of death.

"Establishing a validated pacemaker reutilization program could transform a currently wasted resource into an opportunity for a new life for many citizens in the world," says study senior author Kim A. Eagle, M.D., cardiologist and a director of the U-M Cardiovascular Center.

Each year 1 million to 2 million people worldwide die due to lack of access to pacemakers. But 84 percent of patients surveyed at the UM would donate their pacemaker for reuse.

Through partnerships, the U-M hopes to make the concept of recycling pacemakers a life-saving reality for those who cannot afford them.

Pacemakers are implanted to correct a slow heartbeat. A slow heart rate can be caused by heart attacks, conductive diseases or old age and lead to fainting and fatigue.

Some foreign manufacturers have reduced the cost of pacemakers to as little as $800, a price that still makes it out of reach in poor nations.

"Despite the substantial cost reduction, a new pacemaker is often more than the annual income of the average worker in underdeveloped nations," Eagle says.

Poor nations have not been able to afford the electrophysiology technology that has reduced cardiac deaths in industrialized nations, while unhealthy lifestyle, as well as infectious diseases, contribute to escalating rates of heart disease worldwide.

In recent decades, industrialized nations have seen a drop in deaths from heart attacks and strokes, but those in low- and middle-income nations continue to experience an epidemic of cardiovascular disease.

For instance, in South America and Central America, the parasitic infection Chagas disease can disrupt connections in the heart. Chagas can affect 20 million people, and a study revealed that 72 percent pacemaker recipients in Brazil had been infected at some point in their lives.

Growing evidence and support laid the groundwork for Project My Heart—Your Heart, a collaborative between citizens, physicians and funeral directors of Michigan, the U-M Cardiovascular Center and World Medical Relief, Inc., a Detroit-based non-profit organization that specializes in the delivery of used medical equipment.

Pacemakers removed before burial or cremations are rarely returned to the manufacturer and instead are stored at funeral homes with no apparent use. In a U-M survey of Michigan funeral home directors 89 percent said they were willing to donate devices to charitable organizations if given the opportunity.

A model program

According to study authors, after families consent, donated devices will be sent by the funeral home in a free postage-paid envelope to the U-M for assessment of battery longevity. Funeral directors can request packages from U-M.

If the device has a battery life greater than 70 percent, it will be sterilized and old patient information will be erased, with the ultimate goal of allocating devices to institutions throughout the world with assistance from WMR."Of primary concern when discussing reuse of devices is the possibility of infection," says lead author Timir Baman, M.D., a U-M cardiology fellow.

"However, U-M physicians have examined previous studies involving device reutilization and found the overall infection rate of less than 2 percent is similar to that of new device implantation."

Information about donating pacemakers to the U-M is available online at www.myheartyourheart.org. However, no devices will be shipped overseas, nor implanted into living persons, without meeting state and national regulations.

Additional authors: James N. Kirkpatrick, M.D., assistant professor of medicine at the Hospital of the University of Pennsylvania; Joshua Romero, M.D., Lindsey Gakenheimer, Al Romero, M.D., David C. Lange, Rachel Nosowky, Kay Fuller, Eric Sison, Rogelio Tangco, Nelson Abelardo, George V. Samson, president and chief executive officer at World Medical Relief, Patricia Sovitch, Christian Machado, M.D., Stephen R. Kemp, Ph.D., of the Michigan Funeral Directors Association, Kara Morgenstern, Edward B. Goldman and Hakan Oral, M.D., director of the U-M cardiac electrophysiology service.

Reference: "Pacemaker reutilization: An initiative to alleviate the burden of symptomatic bradyarrhythmia in impoverished nations around the world." Circulation, Oct. 19, 2010.

Funding: Project My Heart—Your Heart Donation initiative is supported by the Hewlett Foundation, the Mardigian Foundation, the University of Michigan Cardiovascular Center and a gift from Sheldon Davis.

Resource:

University of Michigan Cardiovascular Center
www.umcvc.org
My Heart – Your Heart
www.myheartyourheart.org

Shantell M. Kirkendoll | EurekAlert!
Further information:
http://www.umich.edu

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>