Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling pacemakers may alleviate burden of heart disease across the globe

20.10.2010
University of Michigan Cardiovascular Center examines logistics of safe, cost-effective pacemaker donation

Millions worldwide die each year because they can't afford a pacemaker. Meanwhile heart patients in the United States say they'd be willing to donate theirs after death to someone in need.

In the current issue of Circulation, experts at the University of Michigan Cardiovascular Center examine the legality and logistics of collecting pacemakers, after they are removed for burial or cremation, for sterilization and reuse across the globe.

Small humanitarian efforts have shown reusing pacemakers is safe and effective with little risk of infection and patients live as long, and as well, with a recycled pacemaker as those who get new ones, authors say.

It's a novel approach for treating cardiovascular disease which remains the world's leading cause of death.

"Establishing a validated pacemaker reutilization program could transform a currently wasted resource into an opportunity for a new life for many citizens in the world," says study senior author Kim A. Eagle, M.D., cardiologist and a director of the U-M Cardiovascular Center.

Each year 1 million to 2 million people worldwide die due to lack of access to pacemakers. But 84 percent of patients surveyed at the UM would donate their pacemaker for reuse.

Through partnerships, the U-M hopes to make the concept of recycling pacemakers a life-saving reality for those who cannot afford them.

Pacemakers are implanted to correct a slow heartbeat. A slow heart rate can be caused by heart attacks, conductive diseases or old age and lead to fainting and fatigue.

Some foreign manufacturers have reduced the cost of pacemakers to as little as $800, a price that still makes it out of reach in poor nations.

"Despite the substantial cost reduction, a new pacemaker is often more than the annual income of the average worker in underdeveloped nations," Eagle says.

Poor nations have not been able to afford the electrophysiology technology that has reduced cardiac deaths in industrialized nations, while unhealthy lifestyle, as well as infectious diseases, contribute to escalating rates of heart disease worldwide.

In recent decades, industrialized nations have seen a drop in deaths from heart attacks and strokes, but those in low- and middle-income nations continue to experience an epidemic of cardiovascular disease.

For instance, in South America and Central America, the parasitic infection Chagas disease can disrupt connections in the heart. Chagas can affect 20 million people, and a study revealed that 72 percent pacemaker recipients in Brazil had been infected at some point in their lives.

Growing evidence and support laid the groundwork for Project My Heart—Your Heart, a collaborative between citizens, physicians and funeral directors of Michigan, the U-M Cardiovascular Center and World Medical Relief, Inc., a Detroit-based non-profit organization that specializes in the delivery of used medical equipment.

Pacemakers removed before burial or cremations are rarely returned to the manufacturer and instead are stored at funeral homes with no apparent use. In a U-M survey of Michigan funeral home directors 89 percent said they were willing to donate devices to charitable organizations if given the opportunity.

A model program

According to study authors, after families consent, donated devices will be sent by the funeral home in a free postage-paid envelope to the U-M for assessment of battery longevity. Funeral directors can request packages from U-M.

If the device has a battery life greater than 70 percent, it will be sterilized and old patient information will be erased, with the ultimate goal of allocating devices to institutions throughout the world with assistance from WMR."Of primary concern when discussing reuse of devices is the possibility of infection," says lead author Timir Baman, M.D., a U-M cardiology fellow.

"However, U-M physicians have examined previous studies involving device reutilization and found the overall infection rate of less than 2 percent is similar to that of new device implantation."

Information about donating pacemakers to the U-M is available online at www.myheartyourheart.org. However, no devices will be shipped overseas, nor implanted into living persons, without meeting state and national regulations.

Additional authors: James N. Kirkpatrick, M.D., assistant professor of medicine at the Hospital of the University of Pennsylvania; Joshua Romero, M.D., Lindsey Gakenheimer, Al Romero, M.D., David C. Lange, Rachel Nosowky, Kay Fuller, Eric Sison, Rogelio Tangco, Nelson Abelardo, George V. Samson, president and chief executive officer at World Medical Relief, Patricia Sovitch, Christian Machado, M.D., Stephen R. Kemp, Ph.D., of the Michigan Funeral Directors Association, Kara Morgenstern, Edward B. Goldman and Hakan Oral, M.D., director of the U-M cardiac electrophysiology service.

Reference: "Pacemaker reutilization: An initiative to alleviate the burden of symptomatic bradyarrhythmia in impoverished nations around the world." Circulation, Oct. 19, 2010.

Funding: Project My Heart—Your Heart Donation initiative is supported by the Hewlett Foundation, the Mardigian Foundation, the University of Michigan Cardiovascular Center and a gift from Sheldon Davis.

Resource:

University of Michigan Cardiovascular Center
www.umcvc.org
My Heart – Your Heart
www.myheartyourheart.org

Shantell M. Kirkendoll | EurekAlert!
Further information:
http://www.umich.edu

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>