Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nuclear breast imaging technologies associated with higher cancer risks

24.08.2010
Some nuclear-based breast imaging exams may increase a woman's risk of developing radiation-induced cancer, according to a special report appearing online and in the October issue of Radiology. However, the radiation dose and risk from mammography are very low.

"A single breast-specific gamma imaging (BSGI) or positron emission mammography (PEM) examination carries a lifetime risk of inducing fatal cancer greater than or comparable to a lifetime of annual screening mammography starting at age 40," said the study's author, R. Edward Hendrick, Ph.D., clinical professor of radiology at the University of Colorado-Denver, School of Medicine in Aurora, Co.

The risks and benefits of screening mammography are under constant scrutiny. Meanwhile, newer breast imaging technologies, such as BSGI and PEM have been approved by the U.S. Food and Drug Administration (FDA) and introduced into clinical practice. Preliminary studies have shown both to be promising at detecting cancer; however, both involve the injection of radioactive material into the patient.

BSGI uses a high-resolution gamma camera that allows for imaging with mild compression of the breast along with an injection of a nuclear radiotracer, which is absorbed at a higher rate by cancerous cells. In PEM, radioactive material is injected into the body to measure metabolic activity and determine the presence of disease. Other technologies, not yet approved by the FDA, include dedicated breast CT and digital breast tomosynthesis.

Dr. Hendrick reviewed recent studies on radiation doses from radiologic procedures and organ doses from nuclear medicine procedures, along with Biologic Effects of Ionizing Radiation (BEIR) VII age-dependent risk data, to estimate the lifetime risk of radiation-induced cancer incidence and death from breast imaging exams using ionizing radiation.

Two-view digital mammography and screen-film mammography were found to have an average lifetime risk of fatal breast cancer of 1.3 and 1.7 cases, respectively, per 100,000 women aged 40 years at exposure and less than one case per one million women aged 80 years at exposure. Annual screening mammography (digital or screen-film) performed in women from age 40 to age 80 is associated with a lifetime risk of fatal breast cancer of 20 to 25 cases in 100,000.

"Two-thirds of mammography units in the U.S. are now digital, which, on average, exposes the patient to an even lower radiation dose than screen-film," Dr. Hendrick said. "Manufacturers and breast centers continue to take steps to lower radiation doses on digital mammography systems without negatively affecting image quality."

Dedicated breast CT and digital tomosynthesis were both found to have an average lifetime risk of fatal breast cancer of 1.3 to 2.6 cases, respectively, per 100,000 women 40 years of age at exposure.

A single BSGI exam was estimated to involve a lifetime risk of fatal cancer 20 to 30 times that of digital mammography in women aged 40 years, while the lifetime risk of a single PEM was 23 times greater than that of digital mammography. In addition, while mammography only slightly increases a woman's risk for breast cancer, BSGI and PEM may increase the risk of cancers in other organs as well, including the intestines, kidneys, bladder, gallbladder, uterus, ovaries and colon.

People are exposed to radiation from natural sources all the time. The average person in the U.S. receives an effective dose of about 3 millisieverts (mSv) per year from naturally occurring radioactive materials and cosmic radiation from outer space. The average effective dose from two-view screen-film (0.56 mSv) or digital mammography (0.44 mSv) is equivalent to approximately two months of natural background radiation, while the effective doses from BSGI (6.2 mSv) and PEM (9.4 mSv) exams equal approximately two to three years of natural background radiation exposure.

Currently, no one is advocating using PEM or BSGI as a screening method to replace mammography. These exams are typically performed on women with suspicious breast lesions and in women with dense breasts who are difficult to examine with other techniques. Despite the increased radiation dose, these exams have shown promise in detecting cancer accurately and may have a good risk-benefit ratio for some specific indications.

"The primary tool for breast cancer screening is still mammography, which has a very low radiation dose and a very low lifetime risk of cancer induction," Dr. Hendrick said. "The risk of missing a breast cancer because mammography is not done far outweighs the tiny risk of mammography causing a breast cancer."

He added that the subset of women under 40 who are known to be at higher risk of breast cancer should consider being screened with breast ultrasound or breast MRI, both of which deliver no ionizing radiation and have sensitivities to breast cancer that are unaffected by higher breast density.

"Radiation Doses and Cancer Risks from Breast Imaging Studies." Disclosures: Dr. Hendrick is a consultant to GE Healthcare regarding digital breast tomosynthesis and a member of the medical advisory boards of Koning (dedicated breast CT) and Bracco (MR contrast agents). No support from any industry source was provided for this study, and the study results have not been shared with or in any way influenced by commercial entities.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 44,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on breast imaging, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>