Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First noninvasive technique to accurately predict mutations in human brain tumors

22.04.2009
Donald O'Rourke, MD, Associate Professor of Neurosurgery at the University of Pennsylvania School of Medicine and colleagues, were able to accurately predict the specific genetic mutation that caused brain cancer in a group of patients studied using magnetic resonance imaging (MRI). The researchers presented their findings this week at the American Association for Cancer Research 100th Annual Meeting 2009.

"The field of cancer research has evolved to the point where the identification of the mutations that cause tumors has changed how we treat patients in a number of cancers," says O'Rourke. "Potentially, we believe we have a method that uses MRI to identify a tumor mutation.

Historically tumor mutations have been identified in only one way: take the tissue out and examine it using one of two laboratory tests to see if the mutation is present. In this study we've done this identification noninvasively. To my knowledge this is the first demonstration that an MRI, or any imaging technique, can accurately predict the type of mutation of a human tumor."

A particular MRI technique, called relative cerebral blood volume that measures blood flow to the tumor, very highly correlates with the presence of an important mutation in glioblastoma, a type of brain cancer. The mutation occurs in the epidermal growth factor receptor, EGFR, a well known cancer-related protein that helps tumors form their necessary blood vessels. EGFRvIII, the specific mutation the Penn group studied, is the hallmark of a more aggressive form of glioblastoma.

The research team compared MRI readings to tumor tissue samples from 97 glioblastoma patients. They found that patients with higher relative cerebral blood volume as measured by MRI correlates with the EGFRvIII mutation compared to those who did not have the mutation.

Glioblastoma is a variable disease, and clinicians need help to distinguish one form from another. "All of cancer research is evolving to a point where mutations can facilitate care, so a more accurate diagnosis and treatment course can be better planned by identifying the mutational status of the tumor," says O'Rourke.

EGFRvIII is an area of intense interest in the field of cancer, being associated with more aggressive cancers. Having a noninvasive way to identity patients with the EGFRvIII mutation could allow physicians to enroll these patients into trials using drugs that specifically target this mutation. Penn is part of a multicenter trial that is doing just that.

Another implication of having a noninvasive method to track a specific patient group is for following treatment response. "Currently we identify a tumor mutation by removing a tumor, and then we select a particular treatment and evaluate the response with an MRI to see if the tumor is stable or smaller," explains O'Rourke. "With this new method we'll be able to show whether a surrogate of the mutation is changing. EGFRvIII correlates with the elevated blood flow to the tumor and if we put a patient on an effective anti-tumor strategy, that blood flow should reduce. We'd be getting a more biological readout to therapy."

Ongoing work focuses on using advanced MRI to characterize additional mutations in glioblastoma tumors.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation's top ten "Honor Roll" hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.eu

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>