Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST effort could improve high-tech medical scanners

14.06.2012
A powerful color-based imaging technique is making the jump from remote sensing to the operating room—and a team of scientists* at the National Institute of Standards and Technology (NIST) have taken steps to ensure it performs as well when discerning oxygen-depleted tissues and cancer cells in the body as it does with oil spills in the ocean.

The technique, called hyperspectral imaging (HSI), has frequently been used in satellites because of its superior ability to identify objects by color. While many other visual surveying methods can scan only for a single color, HSI is able to distinguish the full color spectrum in each pixel, which allows it to perceive the unique color "signatures" of individual objects.


Microarrayer machines (A) now can mix colors and deposit them on microscope slides, which can be used to calibrate hyperspectral imagers (HSI) for use in medical applications. The finished slides can be custom-colored (B) to calibrate HSIs to find specific types of tumors or disease tissue. Close up, they resemble dot-matrix printwork (C). Credit: Clarke/NIST

Well-calibrated HSI sensors have been able to discern problems from diseases in coral reefs to pollution in the atmosphere as determined by the distinct spectral signature at a location.

"Because diseased tissues and cells also have distinct spectra, scientists have been trying to use HSI for medical applications as well," says NIST physicist Jeeseong Hwang. "But any time you tell a machine to scan for something, you need to be sure it is actually looking for what you want, and you have to make sure that the image analysis algorithm extracts the correct color information out of a complex multicolor data set. We decided to create a way to calibrate an HSI device and to test its algorithm as well."

Matthew Clarke, a former National Research Council-supported postdoctoral fellow in Hwang's group who is currently working in the National Gallery of Art in Washington, D.C., wrote new software for a device called a microarrayer, so named because it is capable of laying down hundreds of tiny sample droplets in specific places on a microscope slide's surface. Normally a microarrayer creates DNA arrays for genetic research, but the team remade it into an artistic tool, programming it to select chemicals of different hues and lay them down on the slide's surface.

The results, which look a bit like dot-matrix printing, can be used to calibrate medical HSI devices and image analysis algorithms. When combined with HSI in a medical imaging application, this effort could allow a surgeon to look for cells with a specific chemical makeup, as determined by the cells' color.

"Scientists and engineers can create a custom slide with the exact colors representing the chemical makeup they want the HSI devices to detect," Hwang says. "It could be a good way to make sure the HSI devices for medical imaging perform correctly so that surgeons are able to see all of a tumor or diseased tissue when operating on a patient."

This project is part of a larger effort to evaluate and validate optical medical imaging devices, led by the NIST team members, David Allen, Maritoni Litorja, Antonio Possolo, Eric Shirley and Jeeseong Hwang. Hwang adds that the special issue** of Biomedical Optics Express in which the team's findings appear is the output of a recent NIST-supported international workshop on the topic.

*M.L. Clarke, J.Y. Lee, D.V. Samarov, D.W. Allen, M. Litorja, R. Nossal and J. Hwang. Designing microarray phantoms for hyperspectral imaging validation. Biomedical Optics Express, Vol. 3(6), pp. 1291-1299 (June 2012), doi: 10.1364/BOE.3.001300.

** See www.opticsinfobase.org/boe/virtual_issue.cfm?vid=168.

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

More articles from Medical Engineering:

nachricht Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms
18.08.2017 | Cedars-Sinai Medical Center

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>