Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel needle could cut medical complications

06.04.2009
Device borrows from oil industry to keep jabs on target

Each year, hundreds of thousands of people suffer medical complications from hypodermic needles that penetrate too far under their skin. A new device developed by MIT engineers and colleagues aims to prevent this from happening by keeping needles on target.

The device, which is purely mechanical, is based on concepts borrowed from the oil industry. It involves a hollow S-shaped needle containing a filament that acts as a guide wire. When a physician pushes the device against a tissue, she is actually applying force only to the filament, not the needle itself, thanks to a special clutch.

When the filament, which moves through the tip of the needle, encounters resistance from a firm tissue, it begins to buckle within the S-shaped tube. Due to the combined buckling and interactions with the walls of the tube, the filament locks into place "and the needle and wire advance as a single unit," said Jeffrey Karp, an affiliate faculty member of the Harvard-MIT Division of Health Sciences and Technology (HST) and co-corresponding author of a recent paper on the work in the Proceedings of the National Academy of Sciences.

The needle and wire proceed through the firm tissue. But once they reach the target cavity (for example, a blood vessel) there is no more resistance on the wire, and it quickly advances forward while the needle remains stationary. Because the needle is no longer moving, it cannot proceed past the cavity into the wrong tissue.

Karp believes that the device could reach clinics within three to five years pending further pre-clinical and clinical testing.

First author Erik K. Bassett, now at Massachusetts General Hospital (MGH), developed the device for his MIT master's thesis. He did so under Alexander Slocum, the Neil and Jane Pappalardo Professor of Mechanical Engineering, with guidance from Karp and Omid Farokhzad of HST, Harvard Medical School (HMS) and Brigham and Women's Hospital (Karp is also affiliated with the latter two). Additional authors are also from HMS and MGH.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>