Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MRI may contribute to early detection of Alzheimer's

New research suggests that magnetic resonance imaging (MRI) could help detect Alzheimer's disease (AD) at an early stage, before irreversible damage has occurred, according to a new study published online and in the June print edition of Radiology.

With no known treatment to alter its course, AD exacts an enormous toll on society. The Alzheimer's Association estimates that 5.4 million Americans are living with the disease today, and the cumulative costs for care could top $20 trillion over the next four decades.

As a result, there is growing interest in tests that could identify individuals at risk for AD at an early stage, when memory preservation may still be possible. Brain volume measurement with MRI is one promising area of research.

"One of the things that made our study novel was that we looked at patients who were cognitively normal at baseline, rather than people with mild cognitive impairment," said lead author Gloria C. Chiang, M.D., radiology resident at University of California San Francisco.

For the study, researchers looked at whether automated brain volume measurements on MRI could accurately predict future memory decline in elderly people with normal cognitive ability. They assessed 149 participants with an initial baseline MRI scan and a neuropsychological assessment.

Follow-up exams two years later showed that 25 of the 149 initially cognitively normal participants, or 17 percent, had memory decline.

While previous research has focused on the medial temporal lobe of the brain, which is strongly associated with memory, researchers looked at volume changes across a number of regions in the temporal and parietal lobes. The parietal lobe is primarily associated with the processing of sensory information and is involved in a number of cognitive and language processes.

The predictive accuracy of the classification model increased as the number of brain regions included in the model increased. Models that took into account several areas of both the temporal and parietal lobes had an 81 percent accuracy rate in discriminating between cognitively normal people with and without memory decline.

The findings illuminated how the interaction between these brain regions may play a key role in memory loss.

"Previous models have included regions of the brain as isolated variables," Dr. Chiang said. "Our study showed that volume loss in multiple regions that may be interconnected had a greater impact on memory decline. We found that automated temporal and parietal volumes identified those at risk for future memory decline with high accuracy."

The study represents another step in the process of incorporating imaging into the diagnosis and management of Alzheimer's disease, according to Dr. Chiang.

"We can see so much with MRI, but right now there's no way to definitively diagnose AD with imaging," she said. "The goal in the future is to have a screening device to monitor cognitive decline and diagnose AD."

"Identifying Cognitively Healthy Elderly Individuals with Subsequent Memory Decline by Using Automated MR Temporoparietal Volumes." Collaborating with Dr. Chiang were Philip S. Insel, M.S., Duygu Tosun, Ph.D., Norbert Schuff, Ph.D., Diana Truran-Sacrey, B.A., Sky Raptentsetsang, B.S., Clifford R. Jack Jr., M.D., Michael W. Weiner, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (

For patient-friendly information on MRI, visit

Linda Brooks | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>