Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI may contribute to early detection of Alzheimer's

12.04.2011
New research suggests that magnetic resonance imaging (MRI) could help detect Alzheimer's disease (AD) at an early stage, before irreversible damage has occurred, according to a new study published online and in the June print edition of Radiology.

With no known treatment to alter its course, AD exacts an enormous toll on society. The Alzheimer's Association estimates that 5.4 million Americans are living with the disease today, and the cumulative costs for care could top $20 trillion over the next four decades.

As a result, there is growing interest in tests that could identify individuals at risk for AD at an early stage, when memory preservation may still be possible. Brain volume measurement with MRI is one promising area of research.

"One of the things that made our study novel was that we looked at patients who were cognitively normal at baseline, rather than people with mild cognitive impairment," said lead author Gloria C. Chiang, M.D., radiology resident at University of California San Francisco.

For the study, researchers looked at whether automated brain volume measurements on MRI could accurately predict future memory decline in elderly people with normal cognitive ability. They assessed 149 participants with an initial baseline MRI scan and a neuropsychological assessment.

Follow-up exams two years later showed that 25 of the 149 initially cognitively normal participants, or 17 percent, had memory decline.

While previous research has focused on the medial temporal lobe of the brain, which is strongly associated with memory, researchers looked at volume changes across a number of regions in the temporal and parietal lobes. The parietal lobe is primarily associated with the processing of sensory information and is involved in a number of cognitive and language processes.

The predictive accuracy of the classification model increased as the number of brain regions included in the model increased. Models that took into account several areas of both the temporal and parietal lobes had an 81 percent accuracy rate in discriminating between cognitively normal people with and without memory decline.

The findings illuminated how the interaction between these brain regions may play a key role in memory loss.

"Previous models have included regions of the brain as isolated variables," Dr. Chiang said. "Our study showed that volume loss in multiple regions that may be interconnected had a greater impact on memory decline. We found that automated temporal and parietal volumes identified those at risk for future memory decline with high accuracy."

The study represents another step in the process of incorporating imaging into the diagnosis and management of Alzheimer's disease, according to Dr. Chiang.

"We can see so much with MRI, but right now there's no way to definitively diagnose AD with imaging," she said. "The goal in the future is to have a screening device to monitor cognitive decline and diagnose AD."

"Identifying Cognitively Healthy Elderly Individuals with Subsequent Memory Decline by Using Automated MR Temporoparietal Volumes." Collaborating with Dr. Chiang were Philip S. Insel, M.S., Duygu Tosun, Ph.D., Norbert Schuff, Ph.D., Diana Truran-Sacrey, B.A., Sky Raptentsetsang, B.S., Clifford R. Jack Jr., M.D., Michael W. Weiner, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>