Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimally invasive treatment of myomas

04.03.2011
Syngo Embolization Guidance application from Siemens makes tumor therapy easier on the patient

Siemens Healthcare has added new functions to Syngo Embolization Guidance to simplify and accelerate the minimally invasive embolization of benign tumors such as myomas. The new version of the imaging software assists with treatment planning and delivery and makes it possible to check treatment outcomes. Syngo Embolization Guidance can speed up interventions as compared with previous embolization procedures, meaning that both contrast medium and dose can be reduced. This makes the occlusion of the blood vessels supplying the myoma easier on the patient than conventional methods.

The new version of Syngo Embolization Guidance from Siemens enables physicians to mark both the myoma and the blood vessels supplying the tumor on the pre-intervention CT (computed tomography) or MRT (magnetic resonance tomography) images. The software calculates the tumor volume and the access path to the myoma for the catheter automatically and shows both in the 3D planning image. Superimposing this image on the live fluoroscopic image during the intervention enables the radiologist to position the catheter easier than has previously been the case and largely removes the need for contrast medium, as the path is already marked and segmented in the 3D image. Treating myomas with Syngo Embolization Guidance is thus easier on the patient. Myomas (uterine leiomyomas) are benign thickenings of the myometrium. The Robert Koch Institute explains in its reporting to the German Federal Health Monitoring System in 2007 that myomas occur in significant numbers in around one third of women from the age of 35 onward in our part of the world1.

The traditional technique for myoma treatment involves the surgical removal of the tumors in an operation. A new minimally invasive method involving the occlusion of blood vessels has become established over recent years. Known as embolization, this technique sees a catheter inserted into the patient's vascular system through a very small access point, usually in the groin, and guided to the tumor. The catheter is navigated through the blood stream using a fluoroscopy system. The position of the catheter in the patient's body is displayed on screen in 2D images from an angiography unit, with contrast medium helping to make the area of interest stand out from the surrounding tissue. Key to this technique is the ability to bring the catheter into a position from which the blood vessels supplying the tumor can be occluded. Once the catheter is in place, emboli, for example very small particles of plastic, are injected directly into the blood vessels that supply the myoma until the blood supply to the benign tumor has been stopped. Deprived of essential nutrients and oxygen, the myomas shrink and eventually die.

The product mentioned herein is not commercially available. Due to regulatory reasons its future availability cannot be guaranteed.

The Siemens Healthcare Sector is one of the world’s largest healthcare solution providers and a leading manufacturer and service provider in the fields of medical imaging, laboratory diagnostics, hospital information technology and hearing instruments. It offers solutions covering the entire supply chain under one roof - from prevention and early detection to diagnosis and on to treatment and aftercare. By optimizing clinical workflows oriented toward the most important clinical pictures, Siemens also strives to make healthcare faster, better and, at the same time, less expensive. Siemens Healthcare currently has some 48,000 employees worldwide and is present throughout the world. During fiscal 2010 (up to September 30) the Sector posted sales worth 12.4 billion euros and profits of around 750 million euros.

1 Robert Koch Institute, Ed.: Vol. 37 Gebärmuttererkrankungen [Hysteropathy], from the series "Gesundheitsberichterstattung des Bundes" [German Federal Health Monitoring], Berlin, January 2007

Marion Bludszuweit | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

nachricht New microscope technique reveals internal structure of live embryos
08.08.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>