Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimally invasive treatment of myomas

04.03.2011
Syngo Embolization Guidance application from Siemens makes tumor therapy easier on the patient

Siemens Healthcare has added new functions to Syngo Embolization Guidance to simplify and accelerate the minimally invasive embolization of benign tumors such as myomas. The new version of the imaging software assists with treatment planning and delivery and makes it possible to check treatment outcomes. Syngo Embolization Guidance can speed up interventions as compared with previous embolization procedures, meaning that both contrast medium and dose can be reduced. This makes the occlusion of the blood vessels supplying the myoma easier on the patient than conventional methods.

The new version of Syngo Embolization Guidance from Siemens enables physicians to mark both the myoma and the blood vessels supplying the tumor on the pre-intervention CT (computed tomography) or MRT (magnetic resonance tomography) images. The software calculates the tumor volume and the access path to the myoma for the catheter automatically and shows both in the 3D planning image. Superimposing this image on the live fluoroscopic image during the intervention enables the radiologist to position the catheter easier than has previously been the case and largely removes the need for contrast medium, as the path is already marked and segmented in the 3D image. Treating myomas with Syngo Embolization Guidance is thus easier on the patient. Myomas (uterine leiomyomas) are benign thickenings of the myometrium. The Robert Koch Institute explains in its reporting to the German Federal Health Monitoring System in 2007 that myomas occur in significant numbers in around one third of women from the age of 35 onward in our part of the world1.

The traditional technique for myoma treatment involves the surgical removal of the tumors in an operation. A new minimally invasive method involving the occlusion of blood vessels has become established over recent years. Known as embolization, this technique sees a catheter inserted into the patient's vascular system through a very small access point, usually in the groin, and guided to the tumor. The catheter is navigated through the blood stream using a fluoroscopy system. The position of the catheter in the patient's body is displayed on screen in 2D images from an angiography unit, with contrast medium helping to make the area of interest stand out from the surrounding tissue. Key to this technique is the ability to bring the catheter into a position from which the blood vessels supplying the tumor can be occluded. Once the catheter is in place, emboli, for example very small particles of plastic, are injected directly into the blood vessels that supply the myoma until the blood supply to the benign tumor has been stopped. Deprived of essential nutrients and oxygen, the myomas shrink and eventually die.

The product mentioned herein is not commercially available. Due to regulatory reasons its future availability cannot be guaranteed.

The Siemens Healthcare Sector is one of the world’s largest healthcare solution providers and a leading manufacturer and service provider in the fields of medical imaging, laboratory diagnostics, hospital information technology and hearing instruments. It offers solutions covering the entire supply chain under one roof - from prevention and early detection to diagnosis and on to treatment and aftercare. By optimizing clinical workflows oriented toward the most important clinical pictures, Siemens also strives to make healthcare faster, better and, at the same time, less expensive. Siemens Healthcare currently has some 48,000 employees worldwide and is present throughout the world. During fiscal 2010 (up to September 30) the Sector posted sales worth 12.4 billion euros and profits of around 750 million euros.

1 Robert Koch Institute, Ed.: Vol. 37 Gebärmuttererkrankungen [Hysteropathy], from the series "Gesundheitsberichterstattung des Bundes" [German Federal Health Monitoring], Berlin, January 2007

Marion Bludszuweit | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht Heart examinations: Miniature particle accelerator saves on contrast agents
27.02.2017 | Technische Universität München

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>