Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microcoils help locate small lung nodules

04.02.2009
A new technique combining computed tomography (CT) with fiber-coated surgical microcoils allows physicians to successfully locate and remove small lung nodules without the need for a more invasive procedure, according to a new study published in the February issue of Radiology.

"Small lung nodules are much more difficult to successfully locate and remove than larger nodules," said the study's lead author, John Mayo, M.D., professor of radiology and cardiology at the University of British Columbia in Vancouver. "Using CT guidance, we can accurately place the microcoils at the precise location of the small nodules and guide video-assisted thoracoscopic surgery (VATS) removal."

A lung nodule is a relatively round lesion, or area of abnormal tissue located within the lung. Lung nodules do not typically cause pain or other symptoms and are most often detected by imaging exams. However, it is not always possible to tell from imaging tests whether a nodule is benign or cancerous.

"When a patient has a very small nodule identified, we can use the microcoil technique to definitively discover whether or not the nodule is malignant and remove the entire nodule in one procedure," Dr. Mayo said.

VATS is a minimally invasive technique in which one or more small incisions are made in the patient's chest and a small fiber optic camera and surgical instruments are inserted through the incisions. Images transmitted by the camera guide the physician through the procedure.

VATS can replace a traditional thoracotomy, a surgical procedure that uses one larger incision to gain access to the chest. VATS typically results in less pain and faster recovery time for the patient compared to open surgery.

Because small, peripheral lung nodules can be difficult to locate, physicians often have to resort to the more invasive thoracotomy procedure, removing larger amounts of lung tissue to successfully locate small nodules.

For the study, Dr. Mayo and colleagues used CT-guided microcoil placement to assist in VATS removal of 75 small, peripheral lung nodules in 69 patients ranging in age from 31 to 81 years. Four patients had two nodules treated, and two of the patients had second nodules removed at a later date. In all, 75 procedures were performed. The microcoil technique allowed the researchers to locate 100 percent of small nodules, and 97 percent of the lung nodules were successfully and completely removed with VATS.

The results show that with precise microcoil localization, even small nodules can be removed with VATS.

"The real beauty of this procedure is that we are able to remove the entire nodule and very little surrounding tissue, so there is no decrease in lung function," Dr. Mayo said. "Recovery time is significantly reduced in these patients as a result. Instead of the three- to six-week recovery period that follows a thoracotomy, these patients can return to work within two to three days."

"Lung Nodules: CT-guided Placement of Microcoils to Direct Video-assisted Thoracoscopic Surgical Resection." Collaborating with Dr. Mayo were Joanne C. Clifton, M.Sc., Tom I. Powell, M.D., John C. English, M.D., Ken G. Evans, M.D., John Yee, M.D., Annette M. McWilliams, M.D., Stephen C. Lam, M.D., and Richard J. Finley, M.D. Journal attribution requested.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (RSNA.org/radiologyjnl)

RSNA is an association of more than 42,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. (RSNA.org)

For patient-friendly information on CT, visit RadiologyInfo.org

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org
http://RadiologyInfo.org

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>