Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microcoils help locate small lung nodules

04.02.2009
A new technique combining computed tomography (CT) with fiber-coated surgical microcoils allows physicians to successfully locate and remove small lung nodules without the need for a more invasive procedure, according to a new study published in the February issue of Radiology.

"Small lung nodules are much more difficult to successfully locate and remove than larger nodules," said the study's lead author, John Mayo, M.D., professor of radiology and cardiology at the University of British Columbia in Vancouver. "Using CT guidance, we can accurately place the microcoils at the precise location of the small nodules and guide video-assisted thoracoscopic surgery (VATS) removal."

A lung nodule is a relatively round lesion, or area of abnormal tissue located within the lung. Lung nodules do not typically cause pain or other symptoms and are most often detected by imaging exams. However, it is not always possible to tell from imaging tests whether a nodule is benign or cancerous.

"When a patient has a very small nodule identified, we can use the microcoil technique to definitively discover whether or not the nodule is malignant and remove the entire nodule in one procedure," Dr. Mayo said.

VATS is a minimally invasive technique in which one or more small incisions are made in the patient's chest and a small fiber optic camera and surgical instruments are inserted through the incisions. Images transmitted by the camera guide the physician through the procedure.

VATS can replace a traditional thoracotomy, a surgical procedure that uses one larger incision to gain access to the chest. VATS typically results in less pain and faster recovery time for the patient compared to open surgery.

Because small, peripheral lung nodules can be difficult to locate, physicians often have to resort to the more invasive thoracotomy procedure, removing larger amounts of lung tissue to successfully locate small nodules.

For the study, Dr. Mayo and colleagues used CT-guided microcoil placement to assist in VATS removal of 75 small, peripheral lung nodules in 69 patients ranging in age from 31 to 81 years. Four patients had two nodules treated, and two of the patients had second nodules removed at a later date. In all, 75 procedures were performed. The microcoil technique allowed the researchers to locate 100 percent of small nodules, and 97 percent of the lung nodules were successfully and completely removed with VATS.

The results show that with precise microcoil localization, even small nodules can be removed with VATS.

"The real beauty of this procedure is that we are able to remove the entire nodule and very little surrounding tissue, so there is no decrease in lung function," Dr. Mayo said. "Recovery time is significantly reduced in these patients as a result. Instead of the three- to six-week recovery period that follows a thoracotomy, these patients can return to work within two to three days."

"Lung Nodules: CT-guided Placement of Microcoils to Direct Video-assisted Thoracoscopic Surgical Resection." Collaborating with Dr. Mayo were Joanne C. Clifton, M.Sc., Tom I. Powell, M.D., John C. English, M.D., Ken G. Evans, M.D., John Yee, M.D., Annette M. McWilliams, M.D., Stephen C. Lam, M.D., and Richard J. Finley, M.D. Journal attribution requested.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (RSNA.org/radiologyjnl)

RSNA is an association of more than 42,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. (RSNA.org)

For patient-friendly information on CT, visit RadiologyInfo.org

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org
http://RadiologyInfo.org

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>