Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Latest applications for CT and low-dose scanning in clinical routine with Dual Source CT

14.07.2010
Siemens at the Annual Scientific Meeting of the Society of Cardiovascular Computed Tomography

At the Annual Scientific Meeting 2010 of the Society of Cardiovascular Computed Tomography (SSCT) in Las Vegas, Siemens will focus on Dual Source CT and show new applications in the fields of radiation dose and contrast agent reduction. Special emphasis will also be devoted to the planning of TAVI (Transcatheter Aortic Valve Implantation) procedures with the CT Scanner Somatom Definition Flash and the imaging software Syngo.via from Siemens. Leading cardiologists will show in workshops and symposia how they achieved progress in CT performance with the help of Siemens solutions.

Computed tomography angiography (CTA) has evolved into one of the most important methods in cardiac imaging in recent years. Particularly the Siemens scanner Somatom Definition Flash is, thanks to Dual Source CT, able to acquire full-volume images of the heart within seconds. That way, it allows cardiologists worldwide rapid advances in diagnosis and therapy of heart diseases. The Siemens scanner offers cardiologists many possibilities to further reduce radiation dose and contrast agent for CTAs. This is also one of the main objectives of the SCCT. Since 2006, the society has dedicated its annual meeting to the latest innovations in cardiac CT, offering an educational forum for cardiac specialists. Siemens provides knowledge for the cardiologists at the SCCT 2010 from July 15 to 17 in Las Vegas in a satellite symposium with many workshops and live case demonstrations.

CTA: Reduced dose in clinical routine with Dual Source CT

„Somatom Definition Flash enables us to significantly reduce CTA radiation dose in clinical routine into the sub-millisievert range for the vast majority of patients,” said Jörg Hausleiter, MD, cardiologist and Director of the Intensive Care Unit at the German Heart Center in Munich, Germany. Hausleiter and his colleagues have come to examine 60 to 70 percent of their patients with a radiation dose below one millisievert (mSv). The Siemens scanner enables them to display the entire heart volume within only one heart beat – independent of the patient’s heart rate. This is a quantum leap in CTA of the coronary vessels, where, until now, conventional technology has required considerably higher dose rates. Examinations in the sub-mSv range were only possible in very few, selected patients. Dual Source CT allows scanning every patient with high or irregular heart rates – even without the use of beta blockers to slow down the heart rate. That means, even patients who cannot tolerate beta blockers may be spared referral to invasive angiography.

Reducing contrast agent: Cardiologists prefer Somatom Definition Flash

Somatom Definition Flash’s low-dose scanning potential also benefits patients with heart valve disease who were selected for a TAVI (Transcatheter Aortic Valve Implantation) and must be examined by CT in order to plan the procedure. The minimally invasive TAVI treatment is particularly appropriate for older patients with a high perioperative risk during heart surgery. It links the implantation of an artificial heart valve with a balloon dilatation in the catheter laboratory. The great advantage is that the patient’s thorax must not be opened as the new valve is inserted through the femoral artery or through a small incision between the ribs. For the preparation of this procedure, Somatom Definition Flash brings even more benefits to the user: TAVI patients are usually multimorbid and suffer from renal insufficiency. They can barely metabolize larger quantities of contrast agent that often have to be applied for a CTA to display the coronary arteries and the aorta. “For us, Somatom Definition Flash is the best solution to plan a TAVI because it allows us to reduce contrast agent significantly,” said Tobias Pflederer, MD, cardiologist at University Hospital Erlangen, Germany. “Single-source CTs, for example, require 100 or even 150 milliliters of contrast agent for assessing the abdominal aorta. With the Definition Flash, we need only 40 milliliters for the aorta and the coronary arteries.” The cardiologists in Erlangen only need two seconds to assess the whole aorta including the coronary arteries in one scan. “Using the resulting information, we can plan every single step of the TAVI procedure,” said Pflederer.

TAVI interventions: Syngo.via supports planning for cardiac specialist

Prior to the TAVI treatment, the cardiologists need to clarify many anatomical issues regarding the vessels. They must know, for example, whether there are stenoses in the peripheral arteries. In that case, they could not insert the new valve through the femoral artery. Furthermore, they must determine the diameter of the aortic bulbus (initial part of the aorta) to select the right size of the artificial valve. The imaging software Syngo.via combines the application modules Syngo.CT Vascular Analysis and Syngo.CT Cardiac Function to display a dedicated TAVI planning workflow that helps physicians answer all these questions quickly, easily, and securely. The software, for instance, automatically exposes the aorta and its valves virtually. It reconstructs the vessel in the most important planes and automatically indicates the measurements that the physician has to conduct for his diagnosis. “With Syngo.via, we are also able to predict the angulations that we will need for invasive fluoroscopy in the TAVI procedure, and we can load and adjust them right in the cath lab,” explained Pflederer. “Our first experiences are that this way, the workflow inside the cath lab can be accelerated by 30 percent.” The University Hospital Erlangen conducts three to four TAVI interventions per week. Pflederer believes that the quantity will increase and that TAVI then may also be used for non-high-risk patients. He assumes that soon, other valve diseases may be treated by transcatheter approaches as well.

The products mentioned here are not commercially available in all countries. Due to regulatory reasons the future availability in any country cannot be guaranteed. Further details are available from the local Siemens organizations.

The outcomes achieved by the Siemens customers described herein were achieved in the customer's unique setting.

Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that others will achieve the same results.

The University Hospital Erlangen and the German Heart Center Munich have a cooperation contract with Siemens Healthcare.

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 48,000 employees worldwide and operates around the world. In fiscal year 2009 (to September 30), the Sector posted revenue of 11.9 billion euros and profit of around 1.5 billion euros.

Marion Bludszuweit | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht Heart examinations: Miniature particle accelerator saves on contrast agents
27.02.2017 | Technische Universität München

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>